Abstract
We study the gravity solution dual to the D0 brane quantum mechanics, or BFSS matrix model, in the ’t Hooft limit.
The classical physics described by this gravity solution is invariant under a scaling transformation, which changes the action with a specific critical exponent, sometimes called the hyperscaling violating exponent. We present an argument for this critical exponent from the matrix model side, which leads to an explanation for the peculiar temperature dependence of the entropy in this theory, S ∝ T9/5. We also present a similar argument for all other Dp-brane geometries.
We then compute the black hole quasinormal modes. This involves perturbing the finite temperature geometry. These perturbations can be easily obtained by a mathematical trick where we view the solution as the dimensional reduction of an AdS2+9/5 × S8 geometry.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].
A.V. Smilga, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys. B 818 (2009) 101 [arXiv:0812.4753] [INSPIRE].
T. Wiseman, On black hole thermodynamics from super Yang-Mills, JHEP 07 (2013) 101 [arXiv:1304.3938] [INSPIRE].
T. Morita, S. Shiba, T. Wiseman and B. Withers, Warm p-soup and near extremal black holes, Class. Quant. Grav. 31 (2014) 085001 [arXiv:1311.6540] [INSPIRE].
D.S. Fisher, Scaling and critical slowing down in random-field Ising systems, Phys. Rev. Lett. 56 (1986) 416 [INSPIRE].
L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
X. Dong et al., Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].
G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].
A. Ghosh, R. Brito and A. Buonanno, Constraints on quasinormal-mode frequencies with LIGO-Virgo binary-black-hole observations, Phys. Rev. D 103 (2021) 124041 [arXiv:2104.01906] [INSPIRE].
I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].
Y. Sekino and T. Yoneya, Generalized AdS/CFT correspondence for matrix theory in the large N limit, Nucl. Phys. B 570 (2000) 174 [hep-th/9907029] [INSPIRE].
Y. Hyakutake, Quantum near-horizon geometry of a black 0-brane, PTEP 2014 (2014) 033B04 [arXiv:1311.7526] [INSPIRE].
Y. Hyakutake, Quantum M-wave and black 0-brane, JHEP 09 (2014) 075 [arXiv:1407.6023] [INSPIRE].
K. Skenderis, Field theory limit of branes and gauged supergravities, Fortsch. Phys. 48 (2000) 205 [hep-th/9903003] [INSPIRE].
I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].
Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, A low temperature expansion for matrix quantum mechanics, JHEP 05 (2015) 136 [arXiv:1304.1593] [INSPIRE].
L. Landau and E. Lifshitz, Mechanics, volume 1, Pergamon Press, U.K. (1960).
A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix models, Phys. Rev. D 59 (1999) 066001 [hep-th/9810146] [INSPIRE].
N. Kawahara, J. Nishimura and S. Takeuchi, High temperature expansion in supersymmetric matrix quantum mechanics, JHEP 12 (2007) 103 [arXiv:0710.2188] [INSPIRE].
R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].
L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].
M.A. Rubin and C.R. Ordóñez, Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics, J. Math. Phys. 25 (1984) 2888.
M. Gourdin, Basics of Lie groups, Frontières (1982).
S. Paban, S. Sethi and M. Stern, Constraints from extended supersymmetry in quantum mechanics, Nucl. Phys. B 534 (1998) 137 [hep-th/9805018] [INSPIRE].
S. Paban, S. Sethi and M. Stern, Supersymmetry and higher derivative terms in the effective action of Yang-Mills theories, JHEP 06 (1998) 012 [hep-th/9806028] [INSPIRE].
D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].
D.N. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett. B 426 (1998) 297 [hep-th/9712185] [INSPIRE].
W. Taylor and M. Van Raamsdonk, Supergravity currents and linearized interactions for matrix theory configurations with fermionic backgrounds, JHEP 04 (1999) 013 [hep-th/9812239] [INSPIRE].
J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].
A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus 132 (2017) 546 [arXiv:1709.09178] [INSPIRE].
A. Jansen, QNMSpectral, https://github.com/APJansen/QNMspectral.
G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett. 2 (2009) 221 [arXiv:0811.1033] [INSPIRE].
E. Witten, Multitrace operators, boundary conditions, and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
Y. Sekino, Evidence for weak-coupling holography from the gauge/gravity correspondence for Dp-branes, PTEP 2020 (2020) 021B01 [arXiv:1909.06621] [INSPIRE].
T. Kitamura, S. Miyashita and Y. Sekino, Rotating particles in AdS: holography at weak gauge coupling and without conformal symmetry, PTEP 2022 (2022) 043B03 [arXiv:2109.12091] [INSPIRE].
G.W. Moore, N. Nekrasov and S. Shatashvili, D particle bound states and generalized instantons, Commun. Math. Phys. 209 (2000) 77 [hep-th/9803265] [INSPIRE].
S.E. Aguilar-Gutierrez, K. Parmentier and T. Van Riet, Towards an “AdS1/CFT0” correspondence from the D( 1)/D7 system?, JHEP 09 (2022) 249 [arXiv:2207.13692] [INSPIRE].
N. Bobev et al., Supersymmetric Yang-Mills, spherical branes, and precision holography, JHEP 03 (2020) 047 [arXiv:1910.08555] [INSPIRE].
I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, AdS bulk locality from sharp CFT bounds, JHEP 11 (2021) 164 [arXiv:2106.10274] [INSPIRE].
M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].
E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N, Phys. Rev. D 94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].
Monte Carlo String/M-theory (MCSMC) collaboration, Precision test of gauge/gravity duality in D0-brane matrix model at low temperature, JHEP 03 (2023) 071 [arXiv:2210.04881] [INSPIRE].
M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].
A.A. Tseytlin, R4 terms in 11 dimensions and conformal anomaly of (2, 0) theory, Nucl. Phys. B 584 (2000) 233 [hep-th/0005072] [INSPIRE].
M. de Roo, H. Suelmann and A. Wiedemann, The supersymmetric effective action of the heterotic string in ten-dimensions, Nucl. Phys. B 405 (1993) 326 [hep-th/9210099] [INSPIRE].
Acknowledgments
We would like to thank M. Green, M. Ivanov, V. Ivo, M. Hanada, M. Mezei, M. Rangamani and J. Santos for discussions. We also thank N. Bobev, P. Bomans, F. Gautason, G. Horowitz, R. Monten and T. Wiseman for comments that we incorporated in the revised version.
J.M. is supported in part by U.S. Department of Energy grant DE-SC0009988.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2303.09974
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Biggs, A., Maldacena, J. Scaling similarities and quasinormal modes of D0 black hole solutions. J. High Energ. Phys. 2023, 155 (2023). https://doi.org/10.1007/JHEP11(2023)155
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2023)155