Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric “pure seesaw” models, both, LFV and slepton mass splittings, occur not only in the left-but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as \( {{{{\text{Br}}\left( {{{\tilde{\tau }}_R} \to \mu \chi_1^0} \right)}} \left/ {{{\text{Br}}\left( {{{\tilde{\tau }}_L} \to \mu \chi_1^0} \right)}} \right.} \) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay μ +e +γ, \( \mathcal{A} \sim \left[ {0,1} \right] \), which differs from the pure seesaw “prediction” \( \mathcal{A} = 1 \). Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  2. T. Yanagida, Horizontal symmetry and masses of neutrinos, in KEK lectures, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979) [SPIRES].

    Google Scholar 

  3. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979) [SPIRES].

    Google Scholar 

  4. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  5. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  6. T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].

    ADS  Google Scholar 

  7. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  8. SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].

    Article  ADS  Google Scholar 

  9. K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802

    Article  ADS  Google Scholar 

  10. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].

    Article  ADS  Google Scholar 

  11. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].

    Google Scholar 

  12. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. 0Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  13. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi and T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses, Phys. Lett. B 357 (1995) 579 [hep-ph/9501407] [SPIRES].

    ADS  Google Scholar 

  14. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].

    ADS  Google Scholar 

  15. J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A new parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013 [hep-ph/0206110] [SPIRES].

    ADS  Google Scholar 

  16. F. Deppisch, H. Pas, A. Redelbach, R. Ruckl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA , Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].

    ADS  Google Scholar 

  17. S.T. Petcov, S. Profumo, Y. Takanishi and C.E. Yaguna, Charged lepton flavor violating decays: leading logarithmic approximation versus full RG results, Nucl. Phys. B 676 (2004) 453 [hep-ph/0306195] [SPIRES].

    Article  ADS  Google Scholar 

  18. E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].

    ADS  Google Scholar 

  19. S.T. Petcov, T. Shindou and Y. Takanishi, Majorana CP-violating phases, RG running of neutrino mixing parameters and charged lepton flavour violating decays, Nucl. Phys. B 738 (2006) 219 [hep-ph/0508243] [SPIRES].

    Article  ADS  Google Scholar 

  20. S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].

    Article  ADS  Google Scholar 

  21. F. Deppisch and J.W.F. Valle, Enhanced lepton flavour violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [SPIRES].

    ADS  Google Scholar 

  22. M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].

    ADS  Google Scholar 

  23. E. Arganda, M.J. Herrero and A.M. Teixeira, μe conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [SPIRES].

    Article  ADS  Google Scholar 

  24. F. Deppisch, T.S. Kosmas and J.W.F. Valle, Enhanced μ e conversion in nuclei in the inverse seesaw model, Nucl. Phys. B 752 (2006) 80 [hep-ph/0512360] [SPIRES].

    Article  ADS  Google Scholar 

  25. A. Rossi, Supersymmetric seesaw without singlet neutrinos: neutrino masses and lepton-flavour violation, Phys. Rev. D 66 (2002) 075003 [hep-ph/0207006] [SPIRES].

    ADS  Google Scholar 

  26. M. Hirsch, S. Kaneko and W. Porod, Supersymmetric seesaw type-II: LHC and lepton flavour violating phenomenology, Phys. Rev. D 78 (2008) 093004 [arXiv:0806.3361] [SPIRES].

    ADS  Google Scholar 

  27. J.N. Esteves, M. Hirsch, W. Porod, J.C. Romao and F. Staub, Supersymmetric type-III seesaw: lepton flavour violating decays and dark matter, arXiv:1010.6000 [SPIRES].

  28. J. Hisano, M.M. Nojiri, Y. Shimizu and M. Tanaka, Lepton flavor violation in the left-handed slepton production at future lepton colliders, Phys. Rev. D 60 (1999) 055008 [hep-ph/9808410] [SPIRES].

    ADS  Google Scholar 

  29. J.N. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [SPIRES].

    Article  ADS  Google Scholar 

  30. G.A. Blair, W. Porod and P.M. Zerwas, The reconstruction of supersymmetric theories at high energy scales, Eur. Phys. J. C 27 (2003) 263 [hep-ph/0210058] [SPIRES].

    ADS  Google Scholar 

  31. A. Freitas, W. Porod and P.M. Zerwas, Determining sneutrino masses and physical implications, Phys. Rev. D 72 (2005) 115002 [hep-ph/0509056] [SPIRES].

    ADS  Google Scholar 

  32. F. Deppisch, A. Freitas, W. Porod and P.M. Zerwas, Determining heavy mass parameters in supersymmetric SO(10) models, Phys. Rev. D 77 (2008) 075009 [arXiv:0712.0361] [SPIRES].

    ADS  Google Scholar 

  33. M.R. Buckley and H. Murayama, How can we test seesaw experimentally?, Phys. Rev. Lett. 97 (2006) 231801 [hep-ph/0606088] [SPIRES].

    Article  ADS  Google Scholar 

  34. B.C. Allanach, J.P. Conlon and C.G. Lester, Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking, Phys. Rev. D 77 (2008) 076006 [arXiv:0801.3666] [SPIRES].

    ADS  Google Scholar 

  35. A. Abada, A.J.R. Figueiredo, J.C. Romao and A.M. Teixeira, Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw, JHEP 10 (2010) 104 [arXiv:1007.4833] [SPIRES].

    Article  ADS  Google Scholar 

  36. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [SPIRES].

    ADS  Google Scholar 

  37. R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  38. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  39. H. Georgi, The state of the art — gauge theories (Talk), AIP Conf. Proc. 23 (1975) 575 [SPIRES].

    Article  ADS  Google Scholar 

  40. H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. R.N. Mohapatra and A. Rasin, A supersymmetric solution to CP problems, Phys. Rev. D 54 (1996) 5835 [hep-ph/9604445] [SPIRES].

    ADS  Google Scholar 

  42. R.N. Mohapatra, New contributions to neutrinoless double-β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [SPIRES].

    ADS  Google Scholar 

  43. S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [SPIRES].

    ADS  Google Scholar 

  44. M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [SPIRES].

    Article  ADS  Google Scholar 

  45. M. Cvetič and J.C. Pati, N = 1 supergravity within the minimal left-right symmetric model, Phys. Lett. B 135 (1984) 57 [SPIRES].

    ADS  Google Scholar 

  46. E.K. Akhmedov and M. Frigerio, Interplay of type-I and type-II seesaw contributions to neutrino mass, JHEP 01 (2007) 043 [hep-ph/0609046] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. R. Kuchimanchi and R.N. Mohapatra, No parity violation without R-parity violation, Phys. Rev. D 48 (1993) 4352 [hep-ph/9306290] [SPIRES].

    ADS  Google Scholar 

  48. K.S. Babu and R.N. Mohapatra, Minimal supersymmetric left-right model, Phys. Lett. B 668 (2008) 404 [arXiv:0807.0481] [SPIRES].

    ADS  Google Scholar 

  49. R. Kuchimanchi and R.N. Mohapatra, Upper bound on the W R mass in automatically R-conserving SUSY models, Phys. Rev. Lett. 75 (1995) 3989 [hep-ph/9509256] [SPIRES].

    Article  ADS  Google Scholar 

  50. C.S. Aulakh, K. Benakli and G. Senjanović, Reconciling supersymmetry and left-right symmetry, Phys. Rev. Lett. 79 (1997) 2188 [hep-ph/9703434] [SPIRES].

    Article  ADS  Google Scholar 

  51. C.S. Aulakh, A. Melfo, A. Rasin and G. Senjanović, Supersymmetry and large scale left-right symmetry, Phys. Rev. D 58 (1998) 115007 [hep-ph/9712551] [SPIRES].

    ADS  Google Scholar 

  52. M.J. Hayashi and A. Murayama, Radiative breaking of SU(2) R × U(1)(BL) gauge symmetry induced by broken N = 1 supergravity in a left-right symmetric model, Phys. Lett. B 153 (1985) 251 [SPIRES].

    ADS  Google Scholar 

  53. P. Fileviez Perez and S. Spinner, Spontaneous R-parity breaking and left-right symmetry, Phys. Lett. B 673 (2009) 251 [arXiv:0811.3424] [SPIRES].

    ADS  Google Scholar 

  54. N. Setzer and S. Spinner, One-loop RGEs for two left-right SUSY models, Phys. Rev. D 71 (2005) 115010 [hep-ph/0503244] [SPIRES].

    ADS  Google Scholar 

  55. W. Chao, Neutrino masses and lepton-flavor-violating τ decays in the supersymmetric left-right model, arXiv:0705.4351 [SPIRES].

  56. R. Barbieri and L.J. Hall, Signals for supersymmetric unification, Phys. Lett. B 338 (1994) 212 [hep-ph/9408406] [SPIRES].

    ADS  Google Scholar 

  57. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [SPIRES].

    ADS  Google Scholar 

  58. F. Staub, SA RA H, arXiv:0806.0538 [SPIRES].

  59. F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [SPIRES].

    Article  ADS  Google Scholar 

  60. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, arXiv:1002.0840 [SPIRES].

  61. SARAH supplementary data homepage, http://theorie.physik.uni-wuerzburg.de/∼fnstaub/supplementary.html.

  62. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].

    Article  ADS  Google Scholar 

  63. K.S. Babu, B. Dutta and R.N. Mohapatra, Partial Yukawa unification and a supersymmetric origin of flavor mixing, Phys. Rev. D 60 (1999) 095004 [hep-ph/9812421] [SPIRES].

    ADS  Google Scholar 

  64. T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  65. MINOS collaboration, Preliminary results from MINOS on muon neutrino disappearance based on an exposure of 2.5 × 1020 120 GeV protons on the NuMI target, arXiv:0708.1495. [SPIRES].

  66. KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [SPIRES].

    Article  ADS  Google Scholar 

  67. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  68. K.S. Babu, B. Dutta and R.N. Mohapatra, Lepton flavor violation and the origin of the seesaw mechanism, Phys. Rev. D 67 (2003) 076006 [hep-ph/0211068] [SPIRES].

    ADS  Google Scholar 

  69. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].

    Article  ADS  Google Scholar 

  70. L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys. B 178 (1981) 75 [SPIRES].

    Article  ADS  Google Scholar 

  71. J. Kopp, M. Lindner, V. Niro and T.E.J. Underwood, On the consistency of perturbativity and gauge coupling unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [SPIRES].

    ADS  Google Scholar 

  72. S.K. Majee, M.K. Parida, A. Raychaudhuri and U. Sarkar, Low intermediate scales for leptogenesis in supersymmetric SO(10) grand unified theories, Phys. Rev. D 75 (2007) 075003 [hep-ph/0701109] [SPIRES].

    ADS  Google Scholar 

  73. W. Martens, L. Mihaila, J. Salomon and M. Steinhauser, Minimal supersymmetric SU(5) and gauge coupling unification at three loops, arXiv:1008.3070 [SPIRES].

  74. D. Borah and U.A. Yajnik, Supersymmetric left-right models with gauge coupling unification and fermion mass universality, arXiv:1010.6289 [SPIRES].

  75. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].

    Article  ADS  Google Scholar 

  76. B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass U.S.A. June 30– July 21 2001, N. Graf ed., [Eur. Phys. J. C 25 (2002) 113] [ hep-ph/0202233] [SPIRES].

  77. S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D2 (1970) 1285 [SPIRES].

    ADS  Google Scholar 

  78. MEG collaboration, MEG: search for μ → eγ down to 10−14 branching ratio, proposal to PSI, Paul Scherrer Institute, Switzerland.

  79. MEG collaboration, S. Mihara, MEG experiment at the Paul Scherrer Institute, Nucl. Phys. A 844 (2010) 150c [SPIRES].

    ADS  Google Scholar 

  80. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].

    Article  ADS  Google Scholar 

  81. Y. Okada, K.-I. Okumura and Y. Shimizu, μ → eγ and μ → 3e processes with polarized muons and supersymmetric grand unified theories, Phys. Rev. D 61 (2000) 094001 [hep-ph/9906446] [SPIRES].

    ADS  Google Scholar 

  82. J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μ → eγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [SPIRES].

    Article  ADS  Google Scholar 

  83. I. Hinchliffe and F.E. Paige, Lepton flavor violation at the LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [SPIRES].

    ADS  Google Scholar 

  84. D.F. Carvalho, J.R. Ellis, M.E. Gomez, S. Lola and J.C. Romao, τ flavour violation in sparticle decays at the LHC, Phys. Lett. B 618 (2005) 162 [hep-ph/0206148] [SPIRES].

    ADS  Google Scholar 

  85. E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].

    Article  ADS  Google Scholar 

  86. F.E. Paige, Determining SUSY particle masses at LHC, hep-ph/9609373 [SPIRES].

  87. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].

    ADS  Google Scholar 

  88. H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].

    ADS  Google Scholar 

  89. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  90. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  91. B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in non-universal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [SPIRES].

    Article  ADS  Google Scholar 

  92. A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].

    Article  ADS  Google Scholar 

  93. A.J. Buras, L. Calibbi and P. Paradisi, Slepton mass-splittings as a signal of LFV at the LHC, JHEP 06 (2010) 042 [arXiv:0912.1309] [SPIRES].

    Article  ADS  Google Scholar 

  94. Y.M. Andreev, S.I. Bityukov, N.V. Krasnikov and A.N. Toropin, Using the e ± μ + ET miss signature in the search for supersymmetry and lepton flavour violation in neutralino decays, Phys. Atom. Nucl. 70 (2007) 1717 [hep-ph/0608176] [SPIRES].

    Article  ADS  Google Scholar 

  95. F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].

    ADS  Google Scholar 

  96. P.C. West, The Yukawa β-function in N = 1 rigid supersymmetric theories, Phys. Lett. B 137 (1984) 371 [SPIRES].

    ADS  Google Scholar 

  97. D.R.T. Jones and L. Mezincescu, The chiral anomaly and a class of two loop finite supersymmetric gauge theories, Phys. Lett. B 138 (1984) 293 [SPIRES].

    ADS  Google Scholar 

  98. I. Jack, D.R.T. Jones and A. Pickering, Renormalisation invariance and the soft β-functions, Phys. Lett. B 426 (1998) 73 [hep-ph/9712542] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  99. Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [SPIRES].

    ADS  Google Scholar 

  100. I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Decoupling of the ϵ scalar mass in softly broken supersymmetry, Phys. Rev. D 50 (1994) 5481 [hep-ph/9407291] [SPIRES].

    ADS  Google Scholar 

  101. I. Jack, D.R.T. Jones and A. Pickering, The soft scalar mass β-function, Phys. Lett. B 432 (1998) 114 [hep-ph/9803405] [SPIRES].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vicente.

Additional information

ArXiv ePrint: 1011.0348

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, J.N., Romao, J.C., Hirsch, M. et al. LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM. J. High Energ. Phys. 2010, 77 (2010). https://doi.org/10.1007/JHEP12(2010)077

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)077

Keywords