Abstract
We consider the one-constant Landau-de Gennes model for nematic liquid crystals. The order parameter is a traceless tensor field \(\mathbf{Q}\), which is constrained to be uniaxial: \(\mathbf{Q}= s (\mathbf{n}\otimes \mathbf{n}- d^{-1}\mathbf{I})\) where \(\mathbf{n}\) is a director field, \(s\in \mathbb {R}\) is the degree of orientation, and \(d\ge 2\) is the dimension. Building on similarities with the one-constant Ericksen energy, we propose a structure-preserving finite element method for the computation of equilibrium configurations. We prove stability and consistency of the method without regularization, and \(\Gamma \)-convergence of the discrete energies towards the continuous one as the mesh size goes to zero. We design an alternating direction gradient flow algorithm for the solution of the discrete problems, and we show that such a scheme decreases the energy monotonically. Finally, we illustrate the method’s capabilities by presenting some numerical simulations in two and three dimensions including non-orientable line fields.






Similar content being viewed by others
References
Adler, J.H., Atherton, T.J., Emerson, D.B., MacLachlan, S.P.: An energy-minimization finite-element approach for the Frank–Oseen model of nematic liquid crystals. SIAM J. Numer. Anal. 53(5), 2226–2254 (2015)
Alama, S., Bronsard, L., Lamy, X.: Analytical description of the Saturn-ring defect in nematic colloids. Phys. Rev. E 93, 012705 (2016)
Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)
Ambrosio, L.: Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation. Manuscripta Math. 68(1), 215–228 (1990)
Araki, T., Tanaka, H.: Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys. Rev. Lett. 97, 127801 (2006)
Bajc, I., Hecht, F., Žumer, S.: A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3d, and its driving efficiency. J. Comput. Phys. 321, 981–996 (2016)
Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem. Linear Algebra Appl. 496, 152–181 (2016)
Ball, J.M., Zarnescu, A.: Orientable and non-orientable director fields for liquid crystals. Proc. Appl. Math. Mech. (PAMM) 7(1), 1050701–1050704 (2007)
Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)
Barrett, J.W., Feng, X., Prohl, A.: Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. M2AN Math. Model. Numer. Anal. 40, 175–199 (2006)
Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010)
Bartels, S., Raisch, A.: Simulation of Q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals. In: Griebel, M. (ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 383–412. Springer, Berlin (2014)
Bhatia, R.: Matrix Analysis, Volume 169 of Graduate Texts in Mathematics. Springer, New York (1997)
Borthagaray, J.P., Walker, S.W.: The \({\bf Q}\)-tensor Model with Uniaxial Constraint. ArXiv e-prints (2020)
Braides, A.: \(\Gamma \)-Convergence for Beginners, Volume 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Scholarship, Oxford (2002)
Braides, A.: Local Minimization, Variational Evolution and \(\Gamma \)-Convergence. Lecture Notes in Mathematics, vol. 2094. Springer, Berlin (2014)
Brinkman, W.F., Cladis, P.E.: Defects in liquid crystals. Phys. Today 35, 48–56 (1982)
Ciarlet, P.G., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2(1), 17–31 (1973)
Cohen, R., Lin, S.-Y., Luskin, M.: Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Commun. 53(1–3), 455–465 (1989)
Cruz, P.A., Tomé, M.F., Stewart, I.W., McKee, S.: Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows. J. Comput. Phys. 247, 109–136 (2013)
Dal Maso, G.: An introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston, Inc., Boston (1993)
Davis, T., Gartland, E.C.: Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)
de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals: International Series of Monographs on Physics, vol. 83, 2nd edn. Oxford Science Publication, Oxford (1995)
Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1991)
Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)
Freiser, M.J.: Ordered states of a nematic liquid. Phys. Rev. Lett. 24(19), 1041 (1970)
Gartland, E.C.: Scalings and limits of Landau-de Gennes models for liquid crystals: a comment on some recent analytical papers. Math. Model. Anal. 23(3), 414–432 (2018)
Gartland, E.C., Palffy-Muhoray, P., Varga, R.S.: Numerical minimization of the Landau-de Gennes free energy: defects in cylindrical capillaries. Mol. Cryst. Liq. Cryst. 199(1), 429–452 (1991)
Gartland, E.C., Ramage, A.: A renormalized Newton method for liquid crystal director modeling. SIAM J. Numer. Anal. 53(1), 251–278 (2015)
Gramsbergen, E.F., Longa, L., de Jeu, W.H.: Landau theory of the nematic-isotropic phase transition. Phys. Rep. 135(4), 195–257 (1986)
Gu, Y., Abbott, N.L.: Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000)
Guillén-González, F.M., Gutiérrez-Santacreu, J.V.: A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model. M2AN Math. Model. Numer. Anal. 47, 1433–1464 (2013)
Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach For Engineering. Wiley, Hoboken (2000)
James, R., Willman, E., FernandezFernandez, F.A., Day, S.E.: Finite-element modeling of liquid–crystal hydrodynamics with a variable degree of order. IEEE Trans. Electron Devices 53(7), 1575–1582 (2006)
Kim, Y.-K., Shiyanovskii, S.V., Lavrentovich, O.D.: Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J. Phys.: Condens. Matter 25(40), 404202 (2013)
Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)
Lamy, X.: A New Light on the Breaking of Uniaxial Symmetry in Nematics. arXiv:1307.0295 (2013)
Lee, G.-D., Anderson, J., Bos, P.J.: Fast Q-tensor method for modeling liquid crystal director configurations with defects. Appl. Phys. Lett. 81(21), 3951–3953 (2002)
Lin, F.H.: On nematic liquid crystals with variable degree of orientation. Commun. Pure Appl. Math. 44(4), 453–468 (1991)
Lin, S.-Y., Luskin, M.: Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26(6), 1310–1324 (1989)
Liu, C., Walkington, N.: Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37(3), 725–741 (2000)
Madsen, L.A., Dingemans, T.J., Nakata, M., Samulski, E.T.: Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92, 145505 (2004)
Majumdar, Apala: Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory. Eur. J. Appl. Math. 21(2), 181–203 (2010)
Mottram, N.J., Newton, C.J.P.: Introduction to Q-Tensor Theory. ArXiv e-prints (2014)
Nochetto, R.H., Walker, S.W., Zhang, W.: Numerics for liquid crystals with variable degree of orientation. In Symposium NN - Mathematical and Computational Aspects of Materials Science, volume 1753 of MRS Proceedings (2015)
Nochetto, R.H., Walker, S.W., Zhang, W.: A finite element method for nematic liquid crystals with variable degree of orientation. SIAM J. Numer. Anal. 55(3), 1357–1386 (2017)
Nochetto, R.H., Walker, S.W., Zhang, W.: The Ericksen model of liquid crystals with colloidal and electric effects. J. Comput. Phys. 352, 568–601 (2018)
Ohzono, T., Katoh, K., Wang, C., Fukazawa, A., Yamaguchi, S., Fukuda, J.: Uncovering different states of topological defects in schlieren textures of a nematic liquid crystal. Sci. Rep. 7(1), 16814 (2017)
Palffy-Muhoray, P., Gartland, E.C., Kelly, J.R.: A new configurational transition in inhomogeneous nematics. Liq. Cryst. 16(4), 713–718 (1994)
Prasad, V., Kang, S.-W., Suresh, K.A., Joshi, L., Wang, Q., Kumar, S.: Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens. J. Am. Chem. Soc. 127(49), 17224–17227 (2005)
Ravnik, M., Žumer, S.: Landau-deGennes modelling of nematic liquid crystal colloids. Liquid Cryst. 36(10–11), 1201–1214 (2009)
Schopohl, N., Sluckin, T.J.: Defect core structure in nematic liquid crystals. Phys. Rev. Lett. 59(22), 2582 (1987)
Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32(3), 1159–1179 (2010)
Sonnet, A., Kilian, A., Hess, S.: Alignment tensor versus director: description of defects in nematic liquid crystals. Phys. Rev. E 52, 718–722 (1995)
Sonnet, A.M., Virga, E.: Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer, Berlin (2012)
Strang, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn. Wellesley-Cambridge, Cambridge (2008)
Temam, R.M., Miranville, A.M.: Mathematical Modeling in Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2005)
Tojo, K., Furukawa, A., Araki, T., Onuki, A.: Defect structures in nematic liquid crystals around charged particles. Eur. Phys. J. E 30(1), 55–64 (2009)
Truesdell, C.A.: A First Course in Rational Continuum Mechanics: Pure and Applied Mathematics, A Series of Monographs and Textbooks. Academic Press, Cambridge (1976)
Virga, E.G.: Variational Theories for Liquid Crystals, vol. 8, 1st edn. Chapman and Hall, London (1994)
Walker, S.W.: FELICITY: A Matlab/C++ toolbox for developing finite element methods and simulation modeling. SIAM J. Sci. Comput. 40(2), C234–C257 (2018)
Walkington, N.J.: Numerical approximation of nematic liquid crystal flows governed by the Ericksen–Leslie equations. M2AN Math. Model. Numer. Anal. 45, 523–540 (2011)
Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)
Yu, L.J., Saupe, A.: Observation of a biaxial nematic phase in potassium laurate-1-decanol-water mixtures. Phys. Rev. Lett. 45(12), 1000 (1980)
Zhao, J., Wang, Q.: Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. 68(3), 1241–1266 (2016)
Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
JPB has been supported in part by NSF grant DMS-1411808 and an AMS-Simons Travel Grant. RHN has been supported in part by NSF Grants DMS-1411808 and DMS-1908267. SWW has been supported in part by NSF Grant DMS-1555222 (CAREER).
Rights and permissions
About this article
Cite this article
Borthagaray, J.P., Nochetto, R.H. & Walker, S.W. A structure-preserving FEM for the uniaxially constrained \(\mathbf{Q}\)-tensor model of nematic liquid crystals. Numer. Math. 145, 837–881 (2020). https://doi.org/10.1007/s00211-020-01133-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-020-01133-z