Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Combining the Lagrange multiplier method, the Uzawa algorithm, and the least square progressive and iterative approximation (LSPIA), we proposed the constrained least square progressive and iterative approximation (CLSPIA) to solve the problem of B-spline curve and surface fitting with constraint on data interpolation, i.e., computing the control points of a B-spline curve or surface which interpolates one set of input points while approximating the other set of given points. Compared with the method of solving the linear system directly, CLSPIA has some advantages as it inherits all the nice properties of LSPIA. Because of the data reuse property of LSPIA, CLSPIA reduces a great amount of computation. Using the local property of LSPIA, we can get shape preserving fitting curves by CLSPIA. CLSPIA is efficient for fitting large-scale data sets due to the fact that its computational complexity is linear to the scale of the input data. The many numerical examples in this paper show the efficiency and effectiveness of CLSPIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  2. Bai, Z.Z., Wang, Z.Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428(11), 2900–2932 (2008)

    MathSciNet  Google Scholar 

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    MathSciNet  Google Scholar 

  4. de Boor, C.: A Practical Guide to Splines, vol. 27. Springer, New York (1978)

    Google Scholar 

  5. de Boor, C.: How does Agee’s smoothing method work. In: Proceedings of the 1979 Army Numerical Analysis and Computers Conference, ARO Report, pp. 79–3 (1979)

  6. Chen, J., Wang, G., Jin, C.: Two kinds of generalized progressive iterative approximations. Acta Autom. Sin. 38(1), 135–138 (2012)

    MathSciNet  Google Scholar 

  7. Chen, J., Wang, G.J.: Progressive iterative approximation for triangular Bézier surfaces. Comput. Aided Des. 43(8), 889–895 (2011)

    Google Scholar 

  8. Chen, S.: Progressive iterative algorithm for triangular T-Bézier surfaces. Comput. Eng. Appl. 50(19), 152 (2014)

    Google Scholar 

  9. Chen, Z.: Finite Element Methods and Their Applications. Scientific Computation. Springer, Berlin (2006)

    Google Scholar 

  10. Chen, Z., Luo, X., Tan, L., Ye, B., Chen, J.: Progressive interpolation based on Catmull–Clark subdivision surfaces. Comput. Gr. Forum 27(7), 1823–1827 (2008)

    Google Scholar 

  11. Cheng, F., Fan, F., Huang, C., Wang, J., Lai, S., Miura, K.T.: Smooth surface reconstruction using Doo-Sabin subdivision surfaces. In: 2008 3rd International Conference on Geometric Modeling and Imaging, pp. 27–33 (2008)

  12. Cheng, F., Fan, F., Lai, S., Huang, C., Wang, J., Yong, J.: Loop subdivision surface based progressive interpolation. J. Comput. Sci. Technol. 24(1), 39–46 (2009)

    MathSciNet  Google Scholar 

  13. Cheng, F.F., Fan, F., Lai, S., Huang, C., Wang, J., Yong, J.: Progressive interpolation using loop subdivision surfaces. In: Chen, F., Jüttler, B. (eds.) Advances in Geometric Modeling and Processing, pp. 526–533. Springer, Berlin (2008)

    Google Scholar 

  14. Cheng, X.I.: On the nonlinear inexact Uzawa algorithm for saddle-point problems. SIAM J. Numer. Anal. 37(6), 1930–1934 (2000)

    MathSciNet  Google Scholar 

  15. Delgado, J., Peña, J.M.: A comparison of different progressive iteration approximation methods. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 136–152. Springer, Berlin (2010)

    Google Scholar 

  16. Deng, C., Lin, H.: Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput. Aided Des. 47, 32–44 (2014)

    MathSciNet  Google Scholar 

  17. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    MathSciNet  Google Scholar 

  18. Fan, F., Cheng, F.F., Lai, S.: Subdivision based interpolation with shape control. Comput. Aided Des. Appl. 5(1–4), 539–547 (2008)

    Google Scholar 

  19. Flanigan, F.J., Kazdan, J.L.: Calculus Two: Linear and Nonlinear Functions. Springer, Berlin (1998)

    Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)

    Google Scholar 

  21. He, S., Ou, D., Yan, C., Lee, C.H.: A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA. J. Comput. Des. Eng. 2(4), 218–232 (2015)

    Google Scholar 

  22. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. AMS Chelsea Publishing Series. AMS Chelsea Pub, New York City (1999)

    Google Scholar 

  23. Ke, Y., Zhu, W., Liu, F., Shi, X.: Constrained fitting for 2D profile-based reverse modeling. Comput. Aided Des. 38(2), 101–114 (2006)

    Google Scholar 

  24. Kineri, Y., Wang, M., Lin, H., Maekawa, T.: B-spline surface fitting by iterative geometric interpolation/approximation algorithms. Comput. Aided Des. 44(7), 697–708 (2012)

    Google Scholar 

  25. Lancaster, P., Šalkauskas, K.: Curve and Surface Fitting: An Introduction. Computational Mathematics and Applications. Academic Press, London (1986)

    Google Scholar 

  26. Lin, H.: The convergence of the geometric interpolation algorithm. Comput. Aided Des. 42(6), 505–508 (2010)

    Google Scholar 

  27. Lin, H., Bao, H., Wang, G.: Totally positive bases and progressive iteration approximation. Comput. Math. Appl. 50(3), 575–586 (2005)

    MathSciNet  Google Scholar 

  28. Lin, H., Cao, Q., Zhang, X.: The convergence of least-squares progressive iterative approximation with singular iterative matrix. J. Syst. Sci. Complex. 31, 1618–1632 (2017)

    Google Scholar 

  29. Lin, H., Maekawa, T., Deng, C.: Survey on geometric iterative methods and their applications. Comput. Aided Des. 95, 40–51 (2018)

  30. Lin, H., Wang, G., Dong, C.: Constructing iterative non-uniform B-spline curve and surface to fit data points. Sci. China Ser. Inf. Sci. 47(3), 315–331 (2004)

    MathSciNet  Google Scholar 

  31. Lin, H., Zhang, Z.: An extended iterative format for the progressive-iteration approximation. Comput. Gr. 35(5), 967–975 (2011)

    MathSciNet  Google Scholar 

  32. Lin, Y., Wei, Y.: Fast corrected Uzawa methods for solving symmetric saddle point problems. Calcolo 43(2), 65–82 (2006)

    MathSciNet  Google Scholar 

  33. Loucera, C., Iglesias, A., Gálvez, A.: Lévy Flight-Driven Simulated Annealing for B-spline Curve Fitting, pp. 149–169. Springer, Cham (2018)

    Google Scholar 

  34. Lu, J.: Convergence analysis of the corrected Uzawa algorithm for symmetric saddle point problems. Appl. Math. A J. Chin. Univers. 29, 29–35 (2014)

    MathSciNet  Google Scholar 

  35. Lu, J., Zhang, Z.: A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem. SIAM J. Matrix Anal. Appl. 31(4), 1934–1957 (2010)

    MathSciNet  Google Scholar 

  36. Lu, L.: Weighted progressive iteration approximation and convergence analysis. Comput. Aided Geom. Des. 27(2), 129–137 (2010)

    MathSciNet  Google Scholar 

  37. Maekawa, T., Matsumoto, Y., Namiki, K.: Interpolation by geometric algorithm. Comput. Aided Des. 39(4), 313–323 (2007)

    Google Scholar 

  38. Nishiyama, Y., Morioka, M., Maekawa, T.: Loop subdivision surface fitting by geometric algorithms. Poster Proc. Pac. Gr. 2008, 67–74 (2008)

    Google Scholar 

  39. Pang, H., Li, W.: A corrected Uzawa method for symmetric saddle point problems. Math. Numer. Sin. 31, 231 (2009)

    MathSciNet  Google Scholar 

  40. Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Comput. Aided Geom. Des. 21(5), 479–497 (2004)

    MathSciNet  Google Scholar 

  41. Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 39(6), 439–451 (2007)

    Google Scholar 

  42. Pereyra, V., Scherer, G.: Large scale least squares scattered data fitting. Appl. Numer. Math. 44(1), 225–239 (2003)

    MathSciNet  Google Scholar 

  43. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  44. Qi, D., Tian, Z., Zhang, Y., Zheng, J.: The method of numeric polish in curve fitting. Acta Math. Sin. 18(3), 173–184 (1975)

    Google Scholar 

  45. Rogers, D., Fog, N.: Constrained B-spline curve and surface fitting. Comput. Aided Des. 21(10), 641–648 (1989)

    Google Scholar 

  46. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  47. Shi, L., Wang, R.: An iterative algorithm of nurbs interpolation and approximation. J. Math. Res. Expos. 26, 735–743 (2006)

    MathSciNet  Google Scholar 

  48. Smith, R.E., Jr., Price, J.M., Howser, L.M.: A Smoothing Algorithm Using Cubic Spline Functions. National Aeronautics and Space Administration, Washington (1974)

    Google Scholar 

  49. Uyar, K., Ülker, E.: B-spline curve fitting with invasive weed optimization. Appl. Math. Model. 52, 320–340 (2017)

    MathSciNet  Google Scholar 

  50. Uzawa, H.: Iterative methods for concave programming. Stud. Linear Nonlinear Program. 6, 154–165 (1958)

    Google Scholar 

  51. Vandergraft, J.S.: Chapter 4 - interpolation and approximation. In: Vandergraft, J.S. (ed.) Introduction to Numerical Computations, 2nd edn., pp. 89–138. Academic Press, London (1983)

    Google Scholar 

  52. Xiong, Y., Li, G., Mao, A.: Convergence analysis for B-spline geometric interpolation. Comput. Gr. 36(7), 884–891 (2012)

    Google Scholar 

  53. Yamaguchi, F.: A design method of free form surfaces by a computer display (1st report). J. Jpn. Soc. Precis. Eng. 43(506), 168–173 (1977)

  54. Zhang, L., Ge, X., Tan, J.: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights. Vis. Comput. 32(9), 1109–1120 (2016)

    Google Scholar 

  55. Zhang, L., Li, Y., Yang, Y., Tan, J.: Generalized progressive iterative approximation for Said-Ball bases on triangular domains. J. Image Gr. 19(2), 275–282 (2014)

    Google Scholar 

  56. Zhang, L., et al.: The iteration method for sample-based polynomial approximation of rational B-spline curves. J. Inf. Comput. Sci. 12(3), 865–872 (2015)

    MathSciNet  Google Scholar 

  57. Zhao, Y., Lin, H.: The PIA property of low degree non-uniform triangular B-B patches. In: 2011 12th International Conference on Computer-Aided Design and Computer Graphics, pp. 239–243 (2011)

  58. Zheng, W., Bo, P., Liu, Y., Wang, W.: Fast B-spline curve fitting by L-BFGS. Comput. Aided Geom. Des. 29(7), 448–462 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNF Grant No. 188577), the National Natural Science Foundation of China (Grant No. 61872121) and City University of Hong Kong (SRG Grant No. 7004605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Deng.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Q., Ma, W. & Deng, C. Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting. Vis Comput 40, 4427–4439 (2024). https://doi.org/10.1007/s00371-023-03090-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03090-8

Keywords