Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

3D printer vision calibration system based on embedding Sobel bilateral filter in least squares filtering algorithm

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

To address the calibration challenge in 3D printing technology, an improved calibration system has been developed, which facilitates the widespread use of bionic stents. Crucially, this system only requires a reference object with known dimensions for automatic calibration. To acquire the required compensation coefficients, various operations are conducted, including printing cell scaffolds as test cube, capturing images, preprocessing images, detecting contours, and classifying with the K-means algorithm. During the image preprocessing stage, an Embedding Bilateral Filter is employed within a least squares filtering-based method, combined with the Sobel operator, to increase the accuracy in obtaining pixel gradient values. Finally, the capability of the developed printer calibration system is demonstrated by a series of print tests; compared to caliper measurements, this approach considerably reduces the time taken, improving calibration efficiency by 98.51% and enhancing accuracy by 9.62%. This development has the potential to enhance the precision and reliability of 3D printing, which is crucial when it comes to producing medical devices and implants. Overall, this is a promising advancement that could have far-reaching implications for the medical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ravoor, J., Thangavel, M., Elsen, S.R.: Comprehensive review on design and manufacturing of bio-scaffolds for bone reconstruction. ACS Appl. Bio Mater. 4(12), 8129–8158 (2021)

    Article  Google Scholar 

  2. Su, C., Chen, Y., Tian, S., Lu, C., Lv, Q.: Natural materials for 3D printing and their applications. Gels 8(11), 748 (2022)

    Article  Google Scholar 

  3. Taghizadeh, M., Taghizadeh, A., Yazdi, M.K., Zarrintaj, P., Stadler, F.J., Ramsey, J.D., Schubert, U.S.: Chitosan-based inks for 3D printing and bioprinting. Green Chem. 24(1), 62–101 (2022)

    Article  Google Scholar 

  4. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., Grigolo, B.: Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng., C 78, 1246–1262 (2017)

    Article  Google Scholar 

  5. Tran, T. T., Hamid, Z. A., & Cheong, K. Y. A review of mechanical properties of scaffold in tissue engineering: Aloe vera composites. In Journal of Physics: Conference Series (Vol. 1082, p. 012080). IOP Publishing. (2018, August).

  6. Richbourg, N.R., Peppas, N.A., Sikavitsas, V.I.: Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J. Tissue Eng. Regen. Med. 13(8), 1275–1293 (2019)

    Article  Google Scholar 

  7. Liu, F., Dai, Z., Cheng, Q., Xu, L., Huang, L., Liu, Z., Wang, Z.: LncRNA-targeting bio-scaffold mediates triple immune effects for postoperative colorectal cancer immunotherapy. Biomaterials 284, 121485 (2022)

    Article  Google Scholar 

  8. Poongodi, R., Chen, Y.L., Yang, T.H., Huang, Y.H., Yang, K.D., Lin, H.C., Cheng, J.K.: Bio-scaffolds as cell or exosome carriers for nerve injury repair. Int. J. Mol. Sci. 22(24), 13347 (2021)

    Article  Google Scholar 

  9. Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering. Part I. Tradit. Factors Tissue Eng. 7(6), 679–689 (2001)

    Google Scholar 

  10. Xue, J., Qin, C., Wu, C.: 3D printing of cell-delivery scaffolds for tissue regeneration. Regen. Biomater. 12, 032 (2023)

    Google Scholar 

  11. Jian, Z., Zhuang, T., Qinyu, T., Liqing, P., Kun, L., Xujiang, L., Quanyi, G.: 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact. Mater. 6(6), 1711–1726 (2021)

    Google Scholar 

  12. Park, J.H., Hong, J.M., Ju, Y.M., Jung, J.W., Kang, H.W., Lee, S.J., Cho, D.W.: A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials 62, 106–115 (2015)

    Article  Google Scholar 

  13. Zhang, M., Lin, R., Wang, X., Xue, J., Deng, C., Feng, C., Wu, C.: 3D printing of Haversian bone–mimicking scaffolds for multicellular delivery in bone regeneration. Sci. Adv. 6(12), 6725 (2020)

    Article  Google Scholar 

  14. Wu, S.D., Dai, N.T., Liao, C.Y., Kang, L.Y., Tseng, Y.W., Hsu, S.H.: Planar-/curvilinear-bioprinted tri-cell-laden hydrogel for healing irregular chronic wounds. Adv. Healthc. Mater. 11(16), 2201021 (2022)

    Article  Google Scholar 

  15. Gao, G., Schilling, A.F., Yonezawa, T., Wang, J., Dai, G., Cui, X.: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9(10), 1304–1311 (2014)

    Article  Google Scholar 

  16. Vora, H.D., Sanyal, S.: A comprehensive review: metrology in additive manufacturing and 3D printing technology. Progr. Addit. Manuf. 5(4), 319–353 (2020)

    Article  Google Scholar 

  17. Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A., Laurencin, C.T.: Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020)

    Article  Google Scholar 

  18. Stopp, S., Wolff, T., Irlinger, F., Lueth, T.: A new method for printer calibration and contour accuracy manufacturing with 3D-print technology. Rap. Prototyp. J. 14(3), 167–172 (2008)

    Article  Google Scholar 

  19. Schouten, M., Abelmann, L., Krijnen, G.: Inductive XY calibration method for multi-material fused filament fabrication 3D printers. Addit. Manuf. 56, 102890 (2022)

    Google Scholar 

  20. Sitthi-Amorn, P., Ramos, J.E., Wangy, Y., Kwan, J., Lan, J., Wang, W., Matusik, W.: MultiFab: a machine vision assisted platform for multi-material 3D printing. Acm Trans. Graph. Tog 34(4), 1–11 (2015)

    Article  Google Scholar 

  21. Shen, H., Sun, W., Fu, J.: Multi-view online vision detection based on robot fused deposit modeling 3D printing technology. Rap. Prototyp. J. 25(2), 343–355 (2019)

    Article  Google Scholar 

  22. Sodupe-Ortega, E., Sanz-Garcia, A., Pernia-Espinoza, A., Escobedo-Lucea, C.: Accurate calibration in multi-material 3D bioprinting for tissue engineering. Materials 11(8), 1402 (2018)

    Article  Google Scholar 

  23. Wang, J., Liang, K., Zhang, N., Yao, H., Ho, T.Y., Sun, L.: Automated calibration of 3D-printed microfluidic devices based on computer vision. Biomicrofluidics 15(2), 5925 (2021)

    Article  Google Scholar 

  24. Lee, D., Park, Y.: Discrete Hough transform using line segment representation for line detection. Opt. Eng. 50(8), 087004–087004 (2011)

    Article  Google Scholar 

  25. Zhang, Y., Wang, H., Yang, G., Zhang, J., Gong, C., Wang, Y.: CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection. Vis. Comput. 56, 1–19 (2023)

    Google Scholar 

  26. Escot, L., Sandubete, J.E.: Estimating Lyapunov exponents on a noisy environment by global and local Jacobian indirect algorithms. Appl. Math. Comput. 436, 127498 (2023)

    MathSciNet  Google Scholar 

  27. Liu, W., Zhang, P., Chen, X., Shen, C., Huang, X., Yang, J.: Embedding bilateral filter in least squares for efficient edge-preserving image smoothing. IEEE Trans. Circuits Syst. Video Technol. 30(1), 23–35 (2018)

    Article  Google Scholar 

  28. Gao, Y., Qi, Z., Zhao, D.: Edge-enhanced instance segmentation by grid regions of interest. Vis. Comput. 39(3), 1137–1148 (2023)

    Article  Google Scholar 

  29. Li, J., Han, D., Wang, X., Yi, P., Yan, L., Li, X.: Multi-sensor medical-image fusion technique based on embedding bilateral filter in least squares and salient detection. Sensors 23(7), 3490 (2023)

    Article  Google Scholar 

  30. Cheng, S.W., Lin, Y.T., Peng, Y.T.: A Fast two-stage bilateral filter using constant time O (1) histogram generation. Sensors 22(3), 926 (2022)

    Article  Google Scholar 

  31. Alphonse, A.S., Benifa, J.B., Muaad, A.Y., Chola, C., Heyat, M.B.B., Murshed, B.A.H., Al-Antari, M.A.: A hybrid stacked restricted boltzmann machine with sobel directional patterns for melanoma prediction in colored skin images. Diagnostics 13(6), 1104 (2023)

    Article  Google Scholar 

  32. Lu, F., Tang, C., Liu, T., Zhang, Z., Li, L.: Multi-attention segmentation networks combined with the sobel operator for medical images. Sensors 23(5), 2546 (2023)

    Article  Google Scholar 

  33. Trung, N.T., Ngan, T.T., Tuan, T.M., Nguyen, T.H.: Combining entropy optimization and sobel operator for medical image fusion. Comp. Syst. Sci. Eng. 44(1), 535–544 (2023)

    Article  Google Scholar 

  34. Ying-Dong, Q., Cheng-Song, C., San-Ben, C., Jin-Quan, L.: A fast subpixel edge detection method using Sobel-Zernike moments operator. Image Vis. Comput. 23(1), 11–17 (2005)

    Article  Google Scholar 

  35. Cheng, Z., Qu, A., He, X.: Contour-aware semantic segmentation network with spatial attention mechanism for medical image. Vis. Comput. 12, 1–14 (2022)

    Google Scholar 

  36. Chang, Q., Li, X., Li, Y., Miyazaki, J.: Multi-directional sobel operator kernel on GPUs. J. Parall. Distrib. Comput. 177, 160–170 (2023)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Nos. 51975400, 62031022, 82073470, 82273554]; Shanxi Provincial Key Medical Scientific Research Project [2020XM06]; and Shanxi Provincial Basic Research Project [202103021221006]; and the Key Research and Development Program of Shanxi Province [202102030201012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbo Sang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, R., Sang, L., Yang, L. et al. 3D printer vision calibration system based on embedding Sobel bilateral filter in least squares filtering algorithm. Vis Comput 40, 6599–6613 (2024). https://doi.org/10.1007/s00371-023-03187-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03187-0

Keywords