Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Compact separator decompositions in dynamic trees and applications to labeling schemes

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

This paper presents an efficient scheme maintaining a separator decomposition representation in dynamic trees using asymptotically optimal labels. In order to maintain the short labels, the scheme uses relatively low message complexity. In particular, if the initial dynamic tree contains only the root, then the scheme incurs an O(log4 n) amortized message complexity per topology change, where n is the current number of vertices in the tree. As a separator decomposition is a fundamental decomposition of trees used extensively as a component in many static graph algorithms, our dynamic scheme for separator decomposition may be used for constructing dynamic versions to these algorithms. The paper then shows how to use our dynamic separator decomposition to construct efficient labeling schemes on dynamic trees, using the same message complexity as our dynamic separator scheme. Specifically, we construct efficient routing schemes on dynamic trees, for both the designer and the adversary port models, which maintain optimal labels, up to a multiplicative factor of O(log log n). In addition, it is shown how to use our dynamic separator decomposition scheme to construct dynamic labeling schemes supporting the ancestry and NCA relations using asymptotically optimal labels, as well as to extend a known result on dynamic distance labeling schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abiteboul S., Alstrup S., Kaplan H., Milo T. and Rauhe T. (2006). Compact labeling scheme for ancestor queries. SIAM J. Comput. 35(6): 1295–1309

    Article  MATH  MathSciNet  Google Scholar 

  2. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, January (2001)

  3. Afek Y., Awerbuch B., Plotkin S.A. and Saks M. (1996). Local management of a global resource in a communication. J. ACM 43: 1–19

    Article  MATH  MathSciNet  Google Scholar 

  4. Afek, Y., Gafni, E., Ricklin, M.: Upper and lower bounds for routing schemes in dynamic networks. In: Proc. 30th Symp. on Foundations of Computer Science, pp. 370–375 (1989)

  5. Alstrup S., Gavoille C., Kaplan H. and Rauhe T. (2004). Nearest common ancestors: a survey and a new distributed algorithm. Theory Comput. Syst. 37: 441–456

    Article  MATH  MathSciNet  Google Scholar 

  6. Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: Proc. 43rd IEEE Symp. on Foundations of Computer Science, November (2002)

  7. Cole R. and Hariharan R. (2005). Dynamic LCA queries on trees. SIAM J. Comput. 34(4): 894–923

    Article  MATH  MathSciNet  Google Scholar 

  8. Eppstein D., Galil Z. and Italiano G.F. (1999). Dynamic graph algorithms. In: Atallah, M.J. (eds) Algorithms and Theoretical Computing Handbook, Chap. 8. CRC Press, Boca Raton

    Google Scholar 

  9. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Proc. 28th Int. Colloq. on Automata, Languages & Prog., LNCS, vol. 2076, pp. 757–772, July (2001)

  10. Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Symp. on Theoretical Aspects of Computer Science, pp. 65–75, March (2002)

  11. Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)

  12. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: 9th European Symp. on Algorithms, pp. 476–488, August (2001)

  13. Kannan S., Naor M. and Rudich S. (1992). Implicit Representation of Graphs. SIAM J. Discrete Math. 5: 596–603

    Article  MATH  MathSciNet  Google Scholar 

  14. Korman, A.: General Compact Labeling schemes for dynamic trees. In Proc. 19th Symp. on Distributed Computing, September (2005)

  15. Korman, A.: Labeling Schemes for vertex connectivity. In: Proc. 34th Int. Colloq. on Automata, Languages and Prog., July (2007)

  16. Korman, A. Kutten, S.: Controller and estimator for dynamic networks. In: Proc. 26th ACM Symp. on Principles of Distributed Computing, August (2007)

  17. Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. In: Proc. 30th Int. Colloq. on Automata, Languages & Prog., July (2003)

  18. Korman, A., Peleg, D.: Dynamic routing schemes for general graphs. In: Proc. 33rd Int. Colloq. on Automata, Languages & Prog. (2006)

  19. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37(1), Special Issue of STACS’02 papers, pp. 49–75 (2004)

    Google Scholar 

  20. Peleg D. (2000). Distributed Computing: a :ocality-sensitive Approach. SIAM, Philadelphia

    Google Scholar 

  21. Peleg, D.: Informative labeling schemes for graphs. Theoretical Computer Science 340, Special Issue of MFCS’00 papers, pp. 577–593 (2005)

  22. Peterson L.L. and Davie B.S. (2007). Computer Networks: A Systems Approach. Morgan Kaufmann, San Francisco

    Google Scholar 

  23. Schieber B. and Vishkin U. (1988). On finding lowest common ancestors: simplification and parallelization. SIAM J. Comput. 17(6): 1253–1262

    Article  MATH  MathSciNet  Google Scholar 

  24. Sleator D.D. and Tarjan R.E. (1983). A data structure for dynamic trees. J. Comput. Syst. Sci. 26(1): 362–391

    Article  MATH  MathSciNet  Google Scholar 

  25. Tanenbaum A.S. (2003). Computer Networks. Prentice Hall, Englewood Cliffs

    Google Scholar 

  26. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, pp. 1–10, July (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Korman.

Additional information

Supported in part at the Technion by an Aly Kaufman fellowship.

Supported in part by a grant from the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korman, A., Peleg, D. Compact separator decompositions in dynamic trees and applications to labeling schemes. Distrib. Comput. 21, 141–161 (2008). https://doi.org/10.1007/s00446-008-0061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-008-0061-5

Keywords