Abstract
Tropical algebra is an emerging field with a number of applications in various areas of mathematics. In many of these applications appeal to tropical polynomials allows studying properties of mathematical objects such as algebraic varieties from the computational point of view. This makes it important to study both mathematical and computational aspects of tropical polynomials. In this paper we prove a tropical Nullstellensatz, and moreover, we show an effective formulation of this theorem. Nullstellensatz is a natural step in building algebraic theory of tropical polynomials and its effective version is relevant for computational aspects of this field. On our way we establish a simple formulation of min-plus and tropical linear dualities. We also observe a close connection between tropical and min-plus polynomial systems.
Similar content being viewed by others
Notes
To avoid a confusion we note that we use the word “dual” in two different meanings. First, we use it in the term “dual Nullstellensatz” as opposed to the standard version of Nullstellensatz. This means that the dual Nullstellensatz is obtained from the standard Nullstellensatz by the (linear) duality (see [11] and later on in this paper). Second, we use the word “dual” in the term “duality result” to denote the general type of results. Since the standard Nullstellensatz is a duality result itself, applying the linear duality to it results in a non-duality result. Thus, the dual Nullstellensatz is not a duality result in a proper sense, but rather the word “dual” is used in contrast to the customary Nullstellensatz which we name “primary”.
References
Akian, M., Gaubert, S., Guterman, A.: Linear independence over tropical semirings and beyond. Contemp. Math. 495, 1–33 (2009)
Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean payoff games. Int. J. Algebra Comput. 22(1), 1250001 (2012)
Bertram, A., Easton, R.: The tropical nullstellensatz for congruences. Adv. Math. 308, 36–82 (2017)
Bogart, T., Jensen, A., Speyer, D., Sturmfels, B., Thomas, R.: Computing tropical varieties. J. Symb. Comput. 42(1–2), 54–73 (2007). Effective Methods in Algebraic Geometry (MEGA 2005)
Brownawell, W.D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. 126(3), 577–591 (1987)
Butkovič, P.: Max-Linear Systems: Theory and Algorithms. Springer, London (2010)
Davydow, A., Grigoriev, D.: Bounds on the number of connected components for tropical prevarieties. Discrete Comput. Geom. 57(2), 470–493 (2017)
Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix. Combin. Comput. Geom. 52, 213–242 (2005)
Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties. J. fur die reine und angew. Math. (Crelles J.) 2006(601), 139–157 (2007)
Giusti, M., Heintz, J., Sabia, J.: On the efficiency of effective Nullstellensätze. Comput. Complex. 3(1), 56–95 (1993)
Grigoriev, D.: On a tropical dual Nullstellensatz. Adv. Appl. Math. 48(2), 457–464 (2012)
Grigoriev, D.: Complexity of solving tropical linear systems. Comput. Complex. 22(1), 71–88 (2013)
Grigoriev, D., Podolskii, V.: Complexity of tropical and min-plus linear prevarieties. Comput. Complex. 24(1), 31–64 (2015)
Grigoriev, D., Podolskii, V.V.: Tropical effective primary and dual Nullstellensätze. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 379–391, Dagstuhl, Germany (2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
Grigoriev, D., Shpilrain, V.: Tropical cryptography. Commun. Algebra 42(6), 2624–2632 (2014)
Grigoriev, D., Vorobjov, N.: Complexity of null-and positivstellensatz proofs. Ann. Pure Appl. Logic 113(1–3), 153–160 (2001)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)
Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. In: Oberwolfach Seminars, Birkhäuser (2009)
Izhakian, Z.: Tropical algebraic sets, ideals and an algebraic Nullstellensatz. Int. J. Algebra Comput. 18(06), 1067–1098 (2008)
Izhakian, Z., Rowen, L.: The tropical rank of a tropical matrix. Commun. Algebra 37(11), 3912–3927 (2009)
Joó, D., Mincheva, K.: Prime congruences of additively idempotent semirings and a nullstellensatz for tropical polynomials. Sel. Math. (2017). https://doi.org/10.1007/s00029-017-0322-x
Jukna, S.: Lower bounds for tropical circuits and dynamic programs. Electronic Colloquium on Computational Complexity (ECCC), 21:80 (2014)
Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)
Lazard, D.: Algèbre linéaire sur \({K}[{X}_1,\ldots,{X}_n]\) et élimination. Bull. Soc. Math. France 105(2), 165–190 (1977)
Lazard, D.: Resolution des systemes d’equations algebriques. Theor. Comput. Sci. 15(1), 77–110 (1981)
Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161. American Mathematical Society, Providence (2015)
Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: Donaldson, S., Eliashberg, Y., Gromov, M. (eds.) Different Faces of Geometry. International Mathematical Series, vol. 3, pp. 257–300. Springer, New York (2004)
Purbhoo, K.: A nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008)
Ren, Q., Shaw, K., Sturmfels, B.: Tropicalization of del pezzo surfaces. Adv. Math. 300, 156–189 (2016). Special volume honoring Andrei Zelevinsky
Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry. Idempotent Math. Math. Phys. Contemp. Math. 377, 289–317 (2003)
Shustin, E., Izhakian, Z.: A tropical Nullstellensatz. Proc. Am. Math. Soc. 135(12), 3815–3821 (2007)
Steffens, R., Theobald, T.: Combinatorics and genus of tropical intersections and ehrhart theory. SIAM J. Discrete Math. 24(1), 17–32 (2010)
Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference in Mathematics, vol. 97. American Mathematical Society, Providence (2002)
Tabera, L..F.: Tropical resultants for curves and stable intersection. Rev. Mate. Iberoam. 24(3), 941–961 (2008)
Theobald, T.: On the frontiers of polynomial computations in tropical geometry. J. Symb. Comput. 41(12), 1360–1375 (2006)
Vorobyev, N.: Extremal algebra of positive matrices. Elektron. Informationsverarbeitung und Kybern. 3, 39–71 (1967)
Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1), 3–27 (1988)
Acknowledgements
The first author is grateful to the Grant RSF 16-11-10075 and to both MCCME and the Max-Planck Institut für Mathematik, Bonn for wonderful working conditions and an inspiring atmosphere.
The work of the second author is partially supported by the grant of the President of Russian Federation (MK-5379.2018.1) and by the Russian Academic Excellence Project ‘5-100’. Part of the work of the second author was done during the visit to Max-Planck Institut für Mathematik, Bonn.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge János Pach
An extended abstract of a preliminary version [14] appeared in the proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Rights and permissions
About this article
Cite this article
Grigoriev, D., Podolskii, V.V. Tropical Effective Primary and Dual Nullstellensätze. Discrete Comput Geom 59, 507–552 (2018). https://doi.org/10.1007/s00454-018-9966-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-018-9966-3