Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-time continuous intersection joins over large sets of moving objects using graphic processing units

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

The Multiple Time Bucket Join (MTB-join) algorithm is the state of the art for processing the continuous intersection join (CI-join) query over moving objects. It considerably outperforms alternatives, but still falls short of real-time application performance requirements for large sets of moving objects. In this paper, we achieve real-time performance for the CI-join query over large sets of moving objects by exploiting the computational power of commodity graphics processing units (GPUs). We first analyze how the main characteristics of the MTB-join algorithm make it ill suited to GPUs and identify key challenges in designing efficient GPU-based algorithms for the query. We then address these challenges by developing the multi-layered grid join (MLG-join) algorithm which has the following key features: (i) memory locality friendly indexing, (ii) no dynamic memory allocation, (iii) in-place object updates, (iv) lock-free concurrent updates, and (v) massive parallelism. These features unleash the full potential of the memory bandwidth and parallel processing of GPUs. Furthermore, we conduct a theoretical analysis which can predict the pruning power of the MLG-join algorithm given certain parameter values used in the algorithm. This allows us to select optimal parameter values. Through extensive experimental results, we show that our analysis accurately models the MLG-join algorithm’s sensitivity to parameter values. The proposed MLG-join algorithm outperforms the MTB-join algorithm, and a GPU-based nested-loops join algorithm, by up to two orders of magnitude, and achieves real-time performance for CI-join queries on large sets of moving objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Currently up to 192 GB/s for the NVIDIA GTX 680.

References

  1. Ali, M.E., Tanin, E., Zhang, R., Kulik, L.: A motion-aware approach for efficient evaluation of continuous queries on 3d object databases. VLDB J. 19(5), 603–632 (2010)

    Article  Google Scholar 

  2. Bandi, N., Sun, C., El Abbadi, A., Agrawal, D.: Hardware acceleration in commercial databases: a case study of spatial operations. In: VLDB, pp. 1021–1032 (2004)

  3. Böhm, C., Noll, R., Plant, C., Wackersreuther, B., Zherdin, A.: Data mining using graphics processing units. Trans. Large-Scale Data- Knowl.-Cent. Syst. I 1, 63–90 (2009)

    Article  Google Scholar 

  4. Boulanger, J.-S., Kienzle, J., Verbrugge, C.: Comparing interest management algorithms for massively multiplayer games. In: NETGAMES, p. 6 (2006)

  5. Corral, A., Torres, M., Vassilakopoulos, M., Manolopoulos, Y.: Predictive join processing between regions and moving objects. In: ADBIS, pp. 46–61 (2008)

  6. Ding, H., Trajcevski, G., Scheuermann, P.: Omcat: optimal maintenance of continuous queries’ answers for trajectories. In: SIGMOD, pp. 748–750 (2006)

  7. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: SSTD, pp. 328–345 (2005)

  8. Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search on moving object trajectories. VLDB J. 19(5), 687–714 (2010)

    Article  Google Scholar 

  9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

  10. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational joins on graphics processors. In: SIGMOD, pp. 511–524 (2008)

  11. Huang, J., Wen, Z., Qi, J., Zhang, R., Chen, J., He, Z.: Top-k most influential locations selection. In: CIKM, pp. 2377–2380 (2011)

  12. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient b\(^+\)-tree based indexing of moving objects. In: VLDB, pp. 768–779 (2004)

  13. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. Proc. VLDB Endow. 1(1), 1068–1080 (2008)

    Article  Google Scholar 

  14. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee, V.W., Brandt, S.A., Dubey, P.: Fast: fast architecture sensitive tree search on modern cpus and gpus. In: SIGMOD, pp. 339–350 (2010)

  15. Morse, K.L., Bic, L., Dillencourt, M.B.: Interest management in large-scale virtual environments. Presence Teleoper. Virtual Environ. 9(1), 52–68 (2000)

    Article  Google Scholar 

  16. Qi, J., Zhang, R., Kulik, L., Lin, D., Xue, Y.: The min-dist location selection query. In: ICDE, pp. 366–377 (2012)

  17. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp. 71–79 (1995)

  18. Salles, M.A.V., Cao, T., Sowell, B., Demers, A.J., Gehrke, J., Koch, C., White, W.M.: An evaluation of checkpoint recovery for massively multiplayer online games. PVLDB 2(1), 1258–1269 (2009)

    Google Scholar 

  19. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: SIGMOD, pp. 331–342. ACM (2000)

  20. Sidlauskas, D., Saltenis, S., Jensen, C.S.: Parallel main-memory indexing for moving-object query and update workloads. In: SIGMOD, pp. 37–48 (2012)

  21. Tao, Y., Papadias, D., Sun, J.: The tpr\(^*\)-tree: an optimized spatio-temporal access method for predictive queries. In: VLDB, pp. 790–801 (2003)

  22. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: Issues and solutions. In: SSDBM, pp. 111–122 (1998)

  23. Zhang, J., You, S.: Speeding up large-scale point-in-polygon test based spatial join on GPUs. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 23–32 (2012)

  24. Zhang, J., You, S., Gruenwald, L.: Parallel online spatial and temporal aggregations on multi-core CPUs and many-core GPUs. Inf. Syst. 44, 134–154 (2014)

  25. Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins over moving objects. In: ICDE, pp. 863–872 (2008)

  26. Zhang, R., Qi, J., Lin, D., Wang, W., Wong, R.C.-W.: A highly optimized algorithm for continuous intersection join queries over moving objects. VLDB J. 21(4), 561–586 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Australian Research Council’s Discovery funding scheme (Project Number DP130104587). Rui Zhang is supported by the Australian Research Council’s Future Fellow funding scheme (Project Number FT120100832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, P.G.D., He, Z., Zhang, R. et al. Real-time continuous intersection joins over large sets of moving objects using graphic processing units. The VLDB Journal 23, 965–985 (2014). https://doi.org/10.1007/s00778-014-0358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-014-0358-x

Keywords