Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the solute transport in heterogeneous media described by the time-fractional mobile/immobile advection diffusion model, where the integer and the fractional time derivatives are employed to characterize the movement of the particles in the mobile and immobile zone, respectively. We propose a fully discrete characteristic finite element scheme for the model, in which the modified method of characteristics is applied to handle the domination of advection. The optimal L2 error estimate is derived with first-order accuracy in time and second-order accuracy in space. Several practical numerical experiments are presented to validate the effectiveness and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelkawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67, 773–791 (2015)

    Google Scholar 

  2. André, S., Meshaka, Y., Cunat, C.: Rheological constitutive equation of solids: a link between models based on irreversible thermodynamics and on fractional order derivative equations. Rheologica Acta 42, 500–515 (2003)

    Article  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  4. Chen, C., Liu, W., Bi, C.: A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations. Numer. Method PDEs. 29, 1543–1562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Liu, H., Zheng, X., Wang, H., A two-grid, MMOC: Finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. Comput. Math. Appl. 79(9), 2771–2783 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45, 611–630 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z.: Characteristic-nonconforming finite-element methods for advection-dominated diffusion problems. Comput. Math. Appl. 48, 1087–1100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Qian, J., Zhan, H., Chen, L., Luo, S.: Mobile-immobile model of solute transport through porous and fractured media. IAHS Publ. 341, 154–158 (2011)

    Google Scholar 

  10. Cheng, A., Wang, H., Wang, K.: A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Meth. PDEs 31, 253–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, Y., Shu, C.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations. Comput. Struct. 87, 630–641 (2009)

    Article  Google Scholar 

  12. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47, 1186–1845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Douglas, J. Jr., Huang, C.S., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gillham, R.W., Sudicky, E.A., Cherry, J.A., Frind, E.O.: An advection-diffusion concept for solute transport in heterogeneous unconsolidated geological deposits. Water Resour. Res. 20, 369–378 (1984)

    Article  Google Scholar 

  18. Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Hansen, S.K.: Effective ADE models for first-order mobile-immobile solute transport: limits on validity and modeling implications. Adv. Water Resour. 86, 184–192 (2015)

    Article  Google Scholar 

  20. Huang, C., Martin, S., An, N.: Optimal L-infinity (L-2) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numer. Math. 58, 661–690 (2018)

    Article  MATH  Google Scholar 

  21. Huang, C., An, N., Yu, X.: A fully discrete direct discontinuous Galerkin method for the fractional diffusion-wave equation. Appl. Anal. 97, 659–675 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2031–2043 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jia, J., Wang, H.: A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes. Comput. Math. Appl. 78, 1345–1356 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  26. Li, S., Zhou, Z.: Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl. Math. Comput. 350, 331–347 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math Method Appl. Sci. 40, 5018–5034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  36. Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296–1307 (2003)

    Article  Google Scholar 

  38. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tadjeran, C., Meerschaert, M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Al-Lawatia, M., Sharpley, R.C.: A characteristic domain decomposition and space time local refinement method for first-order linear hyperbolic equations with interfaces. Numer. Meth PDEs 15, 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, H.: An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations. SIAM J. Numer. Anal. 37, 1338–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, H., Wang, K., Sircar, T., direct, A: \(O(n\log ^{2}N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475(2), 1778–1802 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, S., Chen, H., Wang, H.: Least-squared mixed variational formulation based on space decomposition for a kind of variable-coefficient fractional diffusion problems. J. Sci. Comput. 78, 687–709 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model. Int. J. Comput. Math. 95, 1131–1150 (2018)

    Article  MathSciNet  Google Scholar 

  47. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, 55–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, H., Liu, F., Phanikumarc, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71, 301–318 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, Z., Zhang, C.: Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation. Numer. Algorithms 79, 437–455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Funding

The work is supported by the National Natural Science Foundation of China (Grant Nos. 11771375 and 91630207), Shandong Province Natural Science Foundation (Grant No. ZR2018MA008), Taishan Scholars Program of Shandong Province of China, OSD/ARO MURI Grant W911NF-15-1-0562, the National Science Foundation (Grant Nos. DMS-1620194, DMS-2012291), the China Postdoctoral Science Foundation (Grant No. 2020M681136), and the SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjun Chen.

Additional information

Communicated by: Martin Stynes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zheng, X., Chen, C. et al. A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model. Adv Comput Math 47, 41 (2021). https://doi.org/10.1007/s10444-021-09867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09867-6

Keywords

Mathematics Subject Classification (2010)