Abstract
In this paper, we study the solute transport in heterogeneous media described by the time-fractional mobile/immobile advection diffusion model, where the integer and the fractional time derivatives are employed to characterize the movement of the particles in the mobile and immobile zone, respectively. We propose a fully discrete characteristic finite element scheme for the model, in which the modified method of characteristics is applied to handle the domination of advection. The optimal L2 error estimate is derived with first-order accuracy in time and second-order accuracy in space. Several practical numerical experiments are presented to validate the effectiveness and accuracy of the proposed method.
Similar content being viewed by others
References
Abdelkawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom. Rep. Phys. 67, 773–791 (2015)
André, S., Meshaka, Y., Cunat, C.: Rheological constitutive equation of solids: a link between models based on irreversible thermodynamics and on fractional order derivative equations. Rheologica Acta 42, 500–515 (2003)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)
Chen, C., Liu, W., Bi, C.: A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations. Numer. Method PDEs. 29, 1543–1562 (2013)
Chen, C., Liu, H., Zheng, X., Wang, H., A two-grid, MMOC: Finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations. Comput. Math. Appl. 79(9), 2771–2783 (2020)
Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45, 611–630 (2019)
Chen, H., Wang, H.: Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)
Chen, Z.: Characteristic-nonconforming finite-element methods for advection-dominated diffusion problems. Comput. Math. Appl. 48, 1087–1100 (2004)
Chen, Z., Qian, J., Zhan, H., Chen, L., Luo, S.: Mobile-immobile model of solute transport through porous and fractured media. IAHS Publ. 341, 154–158 (2011)
Cheng, A., Wang, H., Wang, K.: A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Meth. PDEs 31, 253–267 (2015)
Cheng, Y., Shu, C.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations. Comput. Struct. 87, 630–641 (2009)
Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47, 1186–1845 (2013)
Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2009)
Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)
Douglas, J. Jr., Huang, C.S., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)
Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)
Gillham, R.W., Sudicky, E.A., Cherry, J.A., Frind, E.O.: An advection-diffusion concept for solute transport in heterogeneous unconsolidated geological deposits. Water Resour. Res. 20, 369–378 (1984)
Gorenflo, R., Mainardi, F.: Random walk models approximating symmetric space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, 167–191 (1998)
Hansen, S.K.: Effective ADE models for first-order mobile-immobile solute transport: limits on validity and modeling implications. Adv. Water Resour. 86, 184–192 (2015)
Huang, C., Martin, S., An, N.: Optimal L-infinity (L-2) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numer. Math. 58, 661–690 (2018)
Huang, C., An, N., Yu, X.: A fully discrete direct discontinuous Galerkin method for the fractional diffusion-wave equation. Appl. Anal. 97, 659–675 (2018)
Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2031–2043 (2018)
Jia, J., Wang, H.: A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes. Comput. Math. Appl. 78, 1345–1356 (2019)
Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential equations. Elsevier, San Diego (2006)
Li, S., Zhou, Z.: Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl. Math. Comput. 350, 331–347 (2019)
Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math Method Appl. Sci. 40, 5018–5034 (2017)
Li, X., Rui, H.: A two-grid block-centered finite difference method for the nonlinear time-fractional parabolic equation. J. Sci. Comput. 72, 863–891 (2017)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math Appl. 64, 2990–3007 (2012)
Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)
Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)
Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70, 573–591 (2015)
Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)
Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)
Russell, T.F.: Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal. 22, 970–1013 (1985)
Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1296–1307 (2003)
Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)
Tadjeran, C., Meerschaert, M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)
Wang, H., Al-Lawatia, M., Sharpley, R.C.: A characteristic domain decomposition and space time local refinement method for first-order linear hyperbolic equations with interfaces. Numer. Meth PDEs 15, 1–28 (1999)
Wang, H.: An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations. SIAM J. Numer. Anal. 37, 1338–1368 (2000)
Wang, H., Wang, K., Sircar, T., direct, A: \(O(n\log ^{2}N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475(2), 1778–1802 (2019)
Wei, L., He, Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)
Yang, S., Chen, H., Wang, H.: Least-squared mixed variational formulation based on space decomposition for a kind of variable-coefficient fractional diffusion problems. J. Sci. Comput. 78, 687–709 (2019)
Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model. Int. J. Comput. Math. 95, 1131–1150 (2018)
Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)
Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, 55–78 (2015)
Zhang, H., Liu, F., Phanikumarc, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)
Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)
Zhou, Z., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 71, 301–318 (2016)
Zhou, Z., Zhang, C.: Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation. Numer. Algorithms 79, 437–455 (2018)
Acknowledgements
The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.
Funding
The work is supported by the National Natural Science Foundation of China (Grant Nos. 11771375 and 91630207), Shandong Province Natural Science Foundation (Grant No. ZR2018MA008), Taishan Scholars Program of Shandong Province of China, OSD/ARO MURI Grant W911NF-15-1-0562, the National Science Foundation (Grant Nos. DMS-1620194, DMS-2012291), the China Postdoctoral Science Foundation (Grant No. 2020M681136), and the SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Martin Stynes
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, H., Zheng, X., Chen, C. et al. A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model. Adv Comput Math 47, 41 (2021). https://doi.org/10.1007/s10444-021-09867-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-021-09867-6
Keywords
- Modified method of characteristics
- Finite element method
- Time-fractional
- Mobile/immobile advection diffusion model
- Error estimate