Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new destructive bounding scheme for the bin packing problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we present a new lower bounding scheme for the one-dimensional bin packing problem based on a destructive approach and we prove its effectiveness to solve hard instances. Performance comparison to other available lower bounds shows the effectiveness of our proposed lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvim, A., Ribeiro, C., Glover, F., & Aloise, D. (2004). A hybrid improvement heuristic for the one-dimensional bin packing problem. Journal of Heuristics, 10, 205–229.

    Article  Google Scholar 

  • Boschetti, M., & Mingozzi, A. (2003). The two-dimensional finite bin packing problem. Part II: new lower and upper bounds. 4OR: A Quarterly Journal of Operations Research, 1, 135–147.

    Google Scholar 

  • Bourjolly, J. M., & Rebetez, V. (2005). An analysis of lower bound procedures for the bin packing problem. Computers and. Operations Research, 32(3), 395–405.

    Google Scholar 

  • Carlier, J., Clautiaux, F., & Moukrim, F. (2007). New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation. Computers and Operations Research, 34, 2223–2250.

    Article  Google Scholar 

  • Chen, B., & Srivastava, B. (1996). An improved lower bound for the bin packing problem. Discrete Applied Mathematics, 66, 81–94.

    Article  Google Scholar 

  • Coffman Jr, E. G., Gary, M. R., & Johnson, D. S. (1997). Approximation algorithms for bin packing: a survey. In D. Hochbaum (Ed.), Approximation algorithms for NP-hard problems (pp. 46–93). Boston: PWS Publishing.

    Google Scholar 

  • Crainic, T. G., Perboli, G., Pezzuto, M., & Tadei, R. (2007a). Computing the asymptotic worst-case of bin packing lower bounds. European Journal of Operational Research, 183, 1295–1303.

    Article  Google Scholar 

  • Crainic, T. G., Perboli, G., Pezzuto, M., & Tadei, R. (2007b). New bin packing fast lower bounds. Computers and Operations Research, 34, 3439–3457.

    Article  Google Scholar 

  • Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks on identical parallel processors. ORSA Journal on Computing, 7, 191–200.

    Google Scholar 

  • Elhedhli, S. (2005). Ranking lower bounds for the bin packing problem. European Journal of Operational Research, 160, 34–46.

    Article  Google Scholar 

  • Fekete, S., & Schepers, J. (2001). New classes of fast lower bounds for bin packing problems. Mathematical Programming, 91, 11–31.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: W. H. Freeman.

    Google Scholar 

  • Haouari, M., & Gharbi, A. (2005). Fast lifting procedures for the bin packing problem. Discrete Optimization, 2, 201–218.

    Article  Google Scholar 

  • Labbé, M., Laporte, G., & Mercure, H. (1991). Capacitated vehicle routing on trees. Operations Research, 39, 616–622.

    Article  Google Scholar 

  • Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. Chichester: Wiley.

    Google Scholar 

  • Scholl, A., Klein, R., & Jürgens, C. (1997). BISON: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers and Operations Research, 24, 627–645.

    Article  Google Scholar 

  • Schwerin, P., & Wäscher, G. (1997). The bin-packing problem: a problem generator and some numerical experiments with FFD packing and MTP. International Transactions in Operational Research, 4(5/6), 377–389.

    Article  Google Scholar 

  • Wäscher, G., & Gau, T. (1996). Heuristics for the Integer one-dimensional cutting stock problem—a computational study. OR Spektrum, 18(3), 131–144.

    Article  Google Scholar 

  • Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Jarboui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarboui, B., Ibrahim, S. & Rebai, A. A new destructive bounding scheme for the bin packing problem. Ann Oper Res 179, 187–202 (2010). https://doi.org/10.1007/s10479-008-0459-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0459-2

Keywords