Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning interpretable shared space via rank constraint for multi-view clustering

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Multi-view clustering aims to assign appropriate labels for multiple views data in an unsupervised manner, which explores the underlying clustering structures shared by multi-view data. Currently, multi-view data is commonly collected from various feature spaces with different properties or distributions. Existing methods mainly utilize the original features to reconstruct the low-dimensional representation of all views, which fail to take the latent relationship and complementarity from multiple views in a unified space into consideration. Therefore, it is urgent to explore a unified space from multi-view ensemble to address the distribution differences between views. In light of this, we learn an interpretable shared space via rank constraint for multi-view clustering (SSRC), which directly reconstructs multi-view data into shared space to explore the underlying complementarity and low-dimensional representation from multiple views. Specifically, SSRC embeds the low-dimensional representation into a reproducing kernel Hilbert space to learn the similarity matrix, which ensures the high correlation between the shared similarity matrix and low-dimensional representation. Furthermore, the rank constraint is imposed on the Laplacian matrix so that the connected component of the similarity matrix is equal to the number of clusters. It can directly obtain the final clustering results in a unified framework through regularization constraints. Then, an ADMM based optimization scheme is devised to seek the optimal solution efficiently. Experiments on 6 benchmark multi-view datasets corroborate that our approach outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://mlg.ucd.ie/datasets/

  2. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  3. http://www.cl.cam.ac.uk/research/dtg/

  4. http://research.microsoft.com/en-us/projects/objectclassrecognition/

References

  1. Boyd S, Boyd S P, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Cao X, Zhang C, Fu H, Liu S, Zhang H (2015) Diversity-induced multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 586–594

  3. Chen M, Huang L, Wang C, Huang D (2020) Multi-view clustering in latent embedding space

  4. Chen Y, Wang S, Zheng F, Cen Y (2020) Graph-regularized least squares regression for multi-view subspace clustering. Knowl-Based Syst 194, 105482

  5. Chen Y, Xiao X, Zhou Y (2020) Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix. Pattern Recogn 106(107):441

    Google Scholar 

  6. Chen X, Liu L, Zhang L, Zhang H, Meng L, Liu D (2022) Group-pair deep feature learning for multi-view 3d model retrieval. Appl Intell 52(2):2013–2022

    Article  Google Scholar 

  7. Gao H, Nie F, Li X, Huang H (2015) Multi-view subspace clustering. In: Proceedings of the IEEE international conference on computer vision, pp 4238–4246

  8. Gorski J, Pfeuffer F, Klamroth K (2007) Biconvex sets and optimization with biconvex functions: a survey and extensions. Math Methods Oper Res 66(3):373–407

    Article  MathSciNet  MATH  Google Scholar 

  9. Gretton A, Bousquet O, Smola A J, Scholkopf B (2005) Measuring statistical dependence with Hilbert-Schmidt norms, pp 63–77

  10. Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A (2006) A kernel method for the two-sample-problem. Adv Neural Inf Process Syst 19

  11. Gu S, Zhang L, Zuo W, Feng X (2014) Projective dictionary pair learning for pattern classification. Adv Neural Inf Process Syst 1:793–801

    Google Scholar 

  12. Hussain S F, Khan M, Siddiqi I (2022) Co-clustering based classification of multi-view data. Appl Intell 1–17

  13. Jiang G, Wang H, Peng J, Chen D, Fu X (2021) Graph-based multi-view binary learning for image clustering. Neurocomputing 427:225–237

    Article  Google Scholar 

  14. Jiang G, Peng J, Wang H, Mi Z, Fu X (2022) Tensorial multi-view clustering via low-rank constrained high-order graph learning. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2022.3143848https://doi.org/10.1109/TCSVT.2022.3143848

  15. Jones C (2019) First-order methods in optimization. Comput Rev 60(2):56–56

    Google Scholar 

  16. Kang Z, Peng C, Cheng Q (2017) Twin learning for similarity and clustering: a unified kernel approach. arXiv:1705.00678

  17. Kumar A, Daumé H (2011) A co-training approach for multi-view spectral clustering. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 393–400

  18. Kumar A, Rai P, Daume H (2011) Co-regularized multi-view spectral clustering. In: Advances in neural information processing systems, pp 1413–1421

  19. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  20. Lowe D G (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  21. Mohar B, Alavi Y, Chartrand G, Oellermann O (1991) The laplacian spectrum of graphs. In: Graph theory, combinatorics, and applications, vol 2(871–898), pp 12

  22. Nie F, Zeng Z, Tsang I W, Xu D, Zhang C (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808

    Article  Google Scholar 

  23. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 977–986

  24. Nie F, Li J, Li X, et al. (2016) Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification. In: IJCAI, pp 1881–1887

  25. Nie F, Cai G, Li J, Li X (2017) Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process 27(3):1501–1511

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie F, Shi S, Li X (2020) Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn 102(107):207

    Google Scholar 

  27. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  28. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  29. Ren P, Xiao Y, Xu P, Guo J, Chen X, Wang X, Fang D (2018) Robust auto-weighted multi-view clustering. In: IJCAI, pp 2644–2650

  30. Roweis S T, Saul L K (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  31. Tao Z, Liu H, Li S, Ding Z, Fu Y (2019) Marginalized multiview ensemble clustering. IEEE Trans Neural Netw Learn Syst 31(2):600–611

    Article  MathSciNet  Google Scholar 

  32. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  33. Wang Y (2021) Survey on deep multi-modal data analytics: collaboration, rivalry, and fusion. ACM Trans Multimed Comput Commun Appl (TOMM) 17(1s):1–25

    Google Scholar 

  34. Wang Y, Lin X, Wu L, Zhang W, Zhang Q, Huang X (2015) Robust subspace clustering for multi-view data by exploiting correlation consensus. IEEE Trans Image Process 24(11):3939–3949

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang Y, Zhang W, Wu L, Lin X, Fang M, Pan S (2016) Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering, pp 2153–2159

  36. Wang H, Peng J, Chen D, Jiang G, Zhao T, Fu X (2020) Attribute-guided feature learning network for vehicle reidentification. IEEE MultiMedia 27(4):112–121

    Article  Google Scholar 

  37. Wang H, Peng J, Zhao Y, Fu X (2020) Multi-path deep cnns for fine-grained car recognition. IEEE Trans Veh Technol 69(10):10484–10493

    Article  Google Scholar 

  38. Wang H, Wang Y, Zhang Z, Fu X, Zhuo L, Xu M, Wang M (2020) Kernelized multiview subspace analysis by self-weighted learning. IEEE Trans Multimed 23, 3828–3840

  39. Wang H, Jiang G, Peng J, Fu X (2021) Msav: an unified framework for multi-view subspace analysis with view consistence. In: Proceedings of the 2021 international conference on multimedia retrieval, pp 653–659

  40. Wang H, Peng J, Jiang G, Xu F, Fu X (2021) Discriminative feature and dictionary learning with part-aware model for vehicle re-identification. Neurocomputing 438:55–62

    Article  Google Scholar 

  41. Wang S, Chen Z, Du S, Lin Z (2021) Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3082632

  42. Wu L, Wang Y, Shao L (2018) Cycle-consistent deep generative hashing for cross-modal retrieval. IEEE Trans Image Process 28(4):1602–1612

    Article  MathSciNet  Google Scholar 

  43. Xia T, Tao D, Mei T, Zhang Y (2010) Multiview spectral embedding. IEEE Trans Syst Man Cybern Part B (Cybern) 40(6):1438–1446

    Article  Google Scholar 

  44. Xia R, Pan Y, Du L, Yin J (2014) Robust multi-view spectral clustering via low-rank and sparse decomposition, pp 2149–2155

  45. Yin M, Xie S, Wu Z, Zhang Y, Gao J (2018) Subspace clustering via learning an adaptive low-rank graph. IEEE Trans Image Process 27(8):3716–3728

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhan K, Zhang C, Guan J, Wang J (2017) Graph learning for multiview clustering. IEEE Trans Cybern 48(10):2887–2895

    Article  Google Scholar 

  47. Zhang Y F, Xu C, Lu H, Huang Y M (2009) Character identification in feature-length films using global face-name matching. IEEE Trans Multimed 11(7):1276–1288

    Article  Google Scholar 

  48. Zhang C, Hu Q, Fu H, Zhu P, Cao X (2017) Latent multi-view subspace clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4279–4287

  49. Zhong G, Pun C M (2021) Improved normalized cut for multi-view clustering. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3136965

  50. Zhou T, Zhang C, Gong C, Bhaskar H, Yang J (2018) Multiview latent space learning with feature redundancy minimization. IEEE Trans Cybern 50(4), 1655–1668

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China Grant 62002041, Grant 62176037 and Grant 61272368, Grant 61802043, by the Fundamental Research Funds for the Central Universities Grant 3132022250, by the Liaoning Fundamental Research Funds for Universities Grant LJKQZ2021010, by the Liaoning Doctoral Research Start-up Fund Project Grant 2021-BS-075, by the Dalian Science and Technology Innovation Fund 2021JJ12GX028 and 2018J12GX037, by the Dalian Leading talent Grant, by the Foundation of Liaoning Key Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huibing Wang or Xianping Fu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:

Appendix:

Appendix contains the solution details of parameter λ. Obviously, there are various values of the regularization parameters. In the appendix, we provide the optimization steps in this paper.

For problem (11), Lagrange multiplier method is utilized, and its Lagrange equation is:

$$ \lambda \left( {\boldsymbol {S_{i}},\theta ,\delta } \right) = \frac{1}{2}\left\| {\boldsymbol {S_{i}} + \frac{\alpha {{d_{i}^{Q}}}}{{2{\lambda_{i}}}}} \right\|_{2}^{2} - \theta \left( {\boldsymbol {S_{i}^{T}}\boldsymbol 1 - 1} \right) - {\delta_{i}^{T}}\boldsymbol {S_{i}}. $$
(25)

where 𝜃 and δ are Lagrange multipliers. By calculating the partial derivative of S and setting it equation to zero, (25) is reformulated as:

$$ \boldsymbol {S_{i}}{\text{ + }}\frac{\alpha {{d_{i}^{Q}}}}{{2{\lambda_{i}}}} - \theta - {\delta_{i}} = 0. $$
(26)

According to KKT condition [1], we can obtain the optimal solution for S as follows:

$$ \boldsymbol {S_{ij}} = {\left( - \frac{\alpha{d_{ij}^{Q}}}{{2{\lambda_{i}}}} + \theta \right)_ + }. $$
(27)

In order to obtain the optimal nearest neighbor, we suppose the variable \({d_{ij}^{Q}}\) are ordered from small to large: \( {d_{i1}^{Q}},{d_{i2}^{Q}},...,{d_{in}^{Q}}\).

If there are only k nonzero elements, that S can get the optimal solution. That is, Si,k > 0 and Si,k+ 1. So, we have:

$$ \left\{ \begin{array}{l} - \frac{\alpha{d_{ik}^{Q}}}{{2{\lambda_{i}}}} + \theta > 0,\\ - \frac{\alpha {d_{i,k + 1}^{Q}}}{{2{\lambda_{i}}}} + \theta \le 0. \end{array} \right. $$
(28)

According to the constraint \(\boldsymbol {S_{i}^{T}}\boldsymbol 1 = 1\) and (27), we can get the solution of parameter 𝜃:

$$ \theta {\text{ = }}\frac{1}{k}\left( 1 + \frac{\alpha}{{2{\lambda_{i}}}}\sum\limits_{j = 1}^{k} {d_{ij}^{Q}} \right). $$
(29)

According to (25) and (26), λ can be formulated as:

$$ \left\{ \begin{array}{l} \lambda \le \frac{1}{2}\left( kd_{ik + 1}^{Q} - \alpha \sum\limits_{j = 1}^{k} {d_{ij}^{Q}} \right),\\ \lambda > \frac{1}{2}\left( kd_{ik}^{Q} - \alpha \sum\limits_{j = 1}^{k} {d_{ij}^{Q}} \right). \end{array} \right. $$
(30)

The optimal solution of S can be obtained by limiting the number of nonzero entries in k. So the parameter λ is set to:

$$ \lambda {\text{ = }}\frac{\alpha}{2}\left( kd_{ik + 1}^{Q} - \sum\limits_{j = 1}^{k} {d_{ij}^{Q}} \right). $$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Wang, H., Peng, J. et al. Learning interpretable shared space via rank constraint for multi-view clustering. Appl Intell 53, 5934–5950 (2023). https://doi.org/10.1007/s10489-022-03778-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03778-9

Keywords