Abstract
A code \({{\mathcal C}}\) is \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of \({{\mathcal C}}\) by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). The corresponding binary codes of \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive codes under an extended Gray map are called \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes. In this paper, the invariants for \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes, the rank and dimension of the kernel, are studied. Specifically, given the algebraic parameters of \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes, the possible values of these two invariants, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code with dimension of the kernel k is given. Finally, the bounds on the rank, once the kernel dimension is fixed, are established and the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code for each possible pair (r, k) is given.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Bauer H., Ganter B., Hergert F.: Algebraic techniques for nonlinear codes. Combinatorica 3, 21–33 (1983)
Bierbrauer J.: Introduction to coding theory. Chapman & Hall/CRC, Boca Raton (2005)
Borges J., Fernández C., Phelps K.T.: Quaternary Reed–Muller codes. IEEE Trans. Inform. Theory. 51(7), 2686–2691 (2005)
Borges J., Fernández-Córdoba C., Phelps K.T.: ZRM codes. IEEE Trans. Inform. Theory. 54(1), 380–386 (2008)
Borges J., Fernández C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes: generator matrices and duality, to appear in designs, codes and cryptography. arXiv:0710.1149 (2009).
Borges J., Fernández C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive codes. A Magma package. Universitat Autònoma de Barcelona. http://www.ccg.uab.cat (2007).
Borges J., Phelps K.T., Rifà J.: The rank and kernel of extended 1-perfect \({\mathbb{Z}_4}\)-linear and additive non-\({\mathbb{Z}_4}\)–linear codes. IEEE Trans. Inform. Theory. 49(8), 2028–2034 (2003)
Borges J., Phelps K.T., Rifà J., Zinoviev V.A.: On \({\mathbb{Z}_4}\)-linear preparata-like and kerdock-like codes. IEEE Trans. Inform. Theory. 49(11), 2834–2843 (2003)
Borges J., Rifà J.: A characterization of 1-perfect additive codes. IEEE Trans. Inform. Theory. 45(5), 1688–1697 (1999)
Cannon J.J., Bosma W.: (eds.) Handbook of Magma functions, edn. 2.13. 4350 pp. University of Kashan, Kashan, Iran (2006).
Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10(2), 1–97 (1973)
Delsarte P., Levenshtein V.: Asociation schemes and coding theory. IEEE Trans. Inform. Theory. 44(6), 2477–2504 (1998)
Fernández C., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes with all possible ranks and kernel dimensions, in XI international symposium on problems of redundancy in information and control systems. St. Petersburg, Russia, pp. 62–65, July (2007).
Fernández-Córdoba C., Pujol J., Villanueva M.: On rank and kernel of \({\mathbb{Z}_4}\)-linear codes. Lecture Notes in Computer Science no. 5228, pp. 46–55 (2008).
Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\)-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inform. Theory. 40, 301–319 (1994)
Huffman W.C., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)
Krotov D.S.: \({\mathbb{Z}_4}\)-linear Hadamard and extended perfect codes. Electron. Note Discr. Math. 6, 107–112 (2001)
Lindström B.: Group partitions and mixed perfect codes. Canad. Math. Bull. 18, 57–60 (1975)
MacWillams F.J., Sloane N.J.A.: The theory of error correcting codes. North Holland, Amsterdam (1977)
Pernas J., Pujol J., Villanueva M.: Kernel dimension for some families of quaternary Reed–Muller codes. Lecture Notes in Computer Science n. 5393. pp. 128–141 (2008).
Phelps K.T., LeVan M.: Kernels of nonlinear Hamming codes. Design code cryptogr. 6(3), 247–257 (1995)
Phelps K.T., Rifà J.: On binary 1-perfect additive codes: some structural properties. IEEE Trans. Inform. Theory. 48(9), 2587–2592 (2002)
Phelps K.T., Rifà J., Villanueva M.: On the additive \({\mathbb{Z}_4}\)-linear and non-\({\mathbb{Z}_4}\)-linear Hadamard codes. Rank and Kernel. IEEE Trans. Inform. Theory. 52(1), 316–319 (2005)
Pujol J., Rifà J.: Translation invariant propelinear codes. IEEE Trans. Inform. Theory. 43, 590–598 (1997)
Pujol J., Rifà J., Solov’eva F.I.: Construction of \({\mathbb{Z}_4}\)-linear Reed–Muller codes. IEEE Trans. Inform. Theory. 55(1), 99–104 (2009)
Wan Z.-X.: Quaternary codes. World Scientific, Singapore (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Victor A. Zinoviev.
The material in this paper was presented in part at the XI International Symposium on Problems of Redundancy in Information and Control Systems, Saint Petersburg, Russia, July 2007 [13]; and at the 2nd International Castle Meeting on Coding Theory and Applications, Medina del Campo, Spain, September 2008 [14].
Rights and permissions
About this article
Cite this article
Fernández-Córdoba, C., Pujol, J. & Villanueva, M. \({\mathbb{Z}_2\mathbb{Z}_4}\)-linear codes: rank and kernel. Des. Codes Cryptogr. 56, 43–59 (2010). https://doi.org/10.1007/s10623-009-9340-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9340-9
Keywords
- Quaternary linear codes
- \({\mathbb{Z}_4}\)-linear codes
- \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive codes
- \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes
- Kernel
- Rank