Abstract
In this paper, we propose three new turn-based two player roulette games and provide positional winning strategies for these games in terms of depths of words over finite commutative rings with unity. We further discuss the feasibility of these winning strategies by studying depths of codewords of all repeated-root \((\alpha +\gamma \beta )\)-constacyclic codes of prime power lengths over a finite commutative chain ring \({\mathcal {R}},\) where \(\alpha \) is a non-zero element of the Teichmüller set of \({\mathcal {R}},\) \(\gamma \) is a generator of the maximal ideal of \({\mathcal {R}}\) and \(\beta \) is a unit in \({\mathcal {R}}.\) As a consequence, we explicitly determine depth distributions of all repeated-root \((\alpha +\gamma \beta )\)-constacyclic codes of prime power lengths over \({\mathcal {R}}\).
Similar content being viewed by others
References
Blackburn S.R., Etzion T., Paterson K.G.: Permutation polynomials, De Bruijn sequences, and linear complexity. J. Combin. Theory Ser. A 76(1), 55–82 (1996).
Calderbank A.R., Hammons A.R., Kumar P.V., Sloane N.J., Solé P.: A linear construction for certain Kerdock and preparata codes. Bull. Am. Math. Soc. 29(2), 218–222 (1993).
Chan A.H., Games R.A., Key E.L.: On the complexities of De Bruijn sequences. J. Combin. Theory Ser. A 33(3), 233–246 (1982).
Colcombet T., Niwiński D.: On the positional determinacy of edge-labeled games. Theor. Comput. Sci. 352(1–3), 190–196 (2006).
Deng G.: On the depth spectrum of binary linear codes and their dual. Discret. Math. 340(4), 591–595 (2017).
Dinh H.Q., Nguyen H.D., Sriboonchitta S., Vo T.M.: Repeated-root constacyclic codes of prime power lengths over finite chain rings. Finite Fields Appl. 43, 22–41 (2017).
Ehrenborg R., Skinner C.M.: The blind Bartender’s problem. J. Combin. Theory Ser. A 70(2), 249–266 (1995).
Etzion T.: The depth distribution—a new characterization for linear codes. IEEE Trans. Inf. Theory 43(4), 1361–1363 (1997).
Games R., Chan A.: A fast algorithm for determining the complexity of a binary sequence with period \(2^n\). IEEE Trans. Inf. Theory 29(1), 144–146 (1983).
Gardner M.: About rectangling rectangles, parodying poe and many other pleasing problem, mathematical games. Sci. Am. 240(2), 16–24 (1979).
Gardner M.: On altering the past, delaying the future and other ways of tampering with time, mathematical games. Sci. Am. 240(3), 21–30 (1979).
Hammons A., Kumar P.V., Calderbank A., Sloane N., Solé P.: The \({\mathbb{Z}}_{4}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).
Kai X., Wang L., Zhu S.: The depth spectrum of negacyclic codes over \({\mathbb{Z}}_4\). Discret. Math. 340(3), 345–350 (2017).
Kong B., Zheng X., Ma H.: The depth spectrums of constacyclic codes over finite chain rings. Discret. Math. 338(2), 256–261 (2015).
Laaser W.T, Ramshaw L.: Probing the rotating table. In: The Mathematical Gardner, pp. 285–307. Springer, Berlin (1981).
Lewis T., Willard S.: The rotating table. Math. Mag. 53(3), 174–179 (1980).
Luo Y., Fu F.-W., Wei V.-W.: On the depth distribution of linear codes. IEEE Trans. Inf. Theory 46(6), 2197–2203 (2000).
Malvone V., Murano A., Sorrentino L.: Games with additional winning strategies. In: CILC’15, CEUR Workshop proceedings, pp. 175–180 (2015).
Malvone V., Murano A., Sorrentino L.: Additional winning strategies in reachability games. Fundam. Inf. 159(1–2), 175–195 (2018).
McDonald B.R.: Finite Rings with Identity, vol. 28. Marcel Dekker Incorporated, New York (1974).
Mitchell C.J.: On integer-valued rational polynomials and depth distributions of binary codes. IEEE Trans. Inf. Theory 44(7), 3146–3150 (1998).
Nechaev A.A.: Kerdock code in a cyclic form. Discret. Math. Appl. 1(4), 365–384 (1991).
Sharma A., Sidana T.: On the structure and distances of repeated-root constacyclic codes of prime power lengths over finite commutative chain rings. IEEE Trans. Inf. Theory 65(2), 1072–1084 (2018).
Sidana T.: On depth spectra of constacyclic codes (2017). arXiv preprint. arXiv:1912.05815.
Yehuda R.B., Etzion T., Moran S.: Rotating-table games and derivatives of words. Theor. Comput. Sci. 108(2), 311–329 (1993).
Yuan J., Zhu S., Kai X.: On the depth spectrum of repeated-root constacyclic codes over finite chain rings. Discret. Math. 343(2), 111647 (2020).
Zeng M., Luo Y., Gong G.: Rotating-table game and construction of periodic sequences with lightweight calculation. In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 1221–1225. IEEE (2012).
Acknowledgements
The author A. Sharma research support by DST-SERB, India, under Grant No. EMR/2017/000662, is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Ding.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sidana, T., Sharma, A. Roulette games and depths of words over finite commutative rings. Des. Codes Cryptogr. 89, 641–678 (2021). https://doi.org/10.1007/s10623-020-00838-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00838-4