Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Leveraging heterogeneous information based on heterogeneous network and homophily theory for community recommendations

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Online communities benefit information sharing on various social platforms, but their quantity is getting large and hinders online users to join appropriate communities. Personalized recommendation methods have been designed to suggest appropriate communities; however, previous recommendation methods consider communities as virtual users and ignore heterogeneous relations that connect users with communities via various items. We aim to integrate the heterogeneous information into community recommendations and propose a new community recommendation approach based on heterogeneous network and homophily theory. The proposed approach models users, communities, items, and their relations as a heterogeneous network and extracts information based on homophily theory from the network to measure user-community proximities. Next, it incorporates the proximities into a collaborative filtering method to generate recommendations. Experiments on real-world data show that the proposed approach provides better recommendations than multiple baseline methods and the improvements of the proposed approach are significant. This is the first research that employs homophily theory for community recommendations with heterogeneous network. This research not only extends the application scope of homophily theory but also provides a new solution to social platforms with numerous communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.citeulike.org/faq/data.adp.

  2. http://www.di.unito.it/~schifane/dataset_lastfm_WSDM.zip.

References

  1. Priharsari, D., & Abedin, B. (2021). What facilitates and constrains value co-creation in online communities: A sociomateriality perspective. Information & Management, 58(6), 103433. https://doi.org/10.1016/j.im.2021.103433

    Article  Google Scholar 

  2. Hoskins, J., Gopinath, S., Verhaal, J. C., & Yazdani, E. (2021). The influence of the online community, professional critics, and location similarity on review ratings for niche and mainstream brands. Journal of the Academy of Marketing Science, 49(6), 1065–1087. https://doi.org/10.1007/s11747-021-00780-4

    Article  Google Scholar 

  3. Han, X., Wang, L., Farahbakhsh, R., Cuevas, Á., Cuevas, R., Crespi, N., & He, L. (2016). CSD: A multi-user similarity metric for community recommendation in online social networks. Expert Systems with Applications, 53, 14–26. https://doi.org/10.1016/j.eswa.2016.01.003

    Article  Google Scholar 

  4. Zhang, W., Chen, Z., Zha, H., & Wang, J. (2021). Learning from substitutable and complementary relations for graph-based sequential product recommendation. ACM Transactions on Information Systems, 40(2), 26:1-26:28. https://doi.org/10.1145/3464302

    Article  Google Scholar 

  5. Jha, G. K., Gaur, M., & Thakur, H. K. (2022). A trust-worthy approach to recommend movies for communities. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-021-11544-1

    Article  Google Scholar 

  6. Li, Y., Wang, R., Nan, G., Li, D., & Li, M. (2021). A personalized paper recommendation method considering diverse user preferences. Decision Support Systems, 146, 113546. https://doi.org/10.1016/j.dss.2021.113546

    Article  Google Scholar 

  7. Deng, W., & Ma, J. (2021). A knowledge graph approach for recommending patents to companies. Electronic Commerce Research. https://doi.org/10.1007/s10660-021-09471-2

    Article  Google Scholar 

  8. Sun, J., Geng, J., Cheng, X., Zhu, M., Xu, Q., & Liu, Y. (2020). Leveraging personality information to improve community recommendation in e-learning platforms. British Journal of Educational Technology, 51(5), 1711–1733. https://doi.org/10.1111/bjet.13011

    Article  Google Scholar 

  9. Velichety, S., & Ram, S. (2021). Finding a needle in the haystack: Recommending online communities on social media platforms using network and design science. Journal of the Association for Information Systems, 22(5), 1285–1310. https://doi.org/10.17705/1jais.00694

    Article  Google Scholar 

  10. Al-Otaibi, S., Altwoijry, N., Alqahtani, A., Aldheem, L., Alqhatani, M., Alsuraiby, N., Alsaif, S., & Albarrak, S. (2022). Cosine similarity-based algorithm for social networking recommendation. International Journal of Electrical and Computer Engineering (IJECE), 12(2), 1881–1892. https://doi.org/10.11591/ijece.v12i2.pp1881-1892

    Article  Google Scholar 

  11. Wei, J., Lin, Y., Yao, X., & Sandor, V. K. A. (2019). Differential privacy-based trajectory community recommendation in social network. Journal of Parallel and Distributed Computing, 133, 136–148. https://doi.org/10.1016/j.jpdc.2019.07.002

    Article  Google Scholar 

  12. Nandanwar, S., Moroney, A., & Murty, M. N. (2018). Fusing diversity in recommendations in heterogeneous information networks. In Proceedings of the eleventh ACM international conference on Web Search and data mining (pp. 414–422). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3159652.3159720

  13. Kim, H.-N., & Saddik, A. E. (2013). Exploring social tagging for personalized community recommendations. User Modeling and User-Adapted Interaction, 23(2–3), 249–285. https://doi.org/10.1007/s11257-012-9130-3

    Article  Google Scholar 

  14. Wu, Y., Zhao, S., & Guo, R. (2021). A novel community answer matching approach based on phrase fusion heterogeneous information network. Information Processing & Management, 58(1), 102408. https://doi.org/10.1016/j.ipm.2020.102408

    Article  Google Scholar 

  15. Zhao, X., Jin, Z., Liu, Y., & Hu, Y. (2022). Heterogeneous information network embedding for user behavior analysis on social media. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-06706-z

    Article  Google Scholar 

  16. Chen, L., Cao, J., Wang, Y., Liang, W., & Zhu, G. (2022). Multi-view graph attention network for travel recommendation. Expert Systems with Applications, 191, 116234. https://doi.org/10.1016/j.eswa.2021.116234

    Article  Google Scholar 

  17. Wang, Y., Han, L., Qian, Q., Xia, J., & Li, J. (2022). Personalized recommendation via multi-dimensional meta-paths temporal graph probabilistic spreading. Information Processing & Management, 59(1), 102787. https://doi.org/10.1016/j.ipm.2021.102787

    Article  Google Scholar 

  18. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: homophily in social networks. Annual Review of Sociology, 27(1), 415–444. https://doi.org/10.1146/annurev.soc.27.1.415

    Article  Google Scholar 

  19. Wu, L., Sun, P., Hong, R., Ge, Y., & Wang, M. (2021). Collaborative neural social recommendation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 464–476. https://doi.org/10.1109/TSMC.2018.2872842

    Article  Google Scholar 

  20. Chen, R., Hua, Q., Wang, B., Zheng, M., Guan, W., Ji, X., Gao, Q., & Kong, X. (2019). A novel social recommendation method fusing user’s social status and homophily based on matrix factorization techniques. IEEE Access, 7, 18783–18798. https://doi.org/10.1109/ACCESS.2019.2893024

    Article  Google Scholar 

  21. Dev, P. (2016). Homophily and community structure in networks. Journal of Public Economic Theory, 18(2), 268–290. https://doi.org/10.1111/jpet.12142

    Article  Google Scholar 

  22. Chang, J.-W., Chiou, C.-Y., Liao, J.-Y., Hung, Y.-K., Huang, C.-C., Lin, K.-C., & Pu, Y.-H. (2021). Music recommender using deep embedding-based features and behavior-based reinforcement learning. Multimedia Tools and Applications, 80(26), 34037–34064. https://doi.org/10.1007/s11042-019-08356-9

    Article  Google Scholar 

  23. Lin, Y., Feng, S., Lin, F., Zeng, W., Liu, Y., & Wu, P. (2021). Adaptive course recommendation in MOOCs. Knowledge-Based Systems, 224, 107085. https://doi.org/10.1016/j.knosys.2021.107085

    Article  Google Scholar 

  24. Yuan, H., & Deng, W. (2021). Doctor recommendation on healthcare consultation platforms: An integrated framework of knowledge graph and deep learning. Internet Research. https://doi.org/10.1108/INTR-07-2020-0379

    Article  Google Scholar 

  25. Chen, W.-Y., Zhang, D., & Chang, E. Y. (2008). Combinational collaborative filtering for personalized community recommendation. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 115–123). New York, NY, USA: ACM. https://doi.org/10.1145/1401890.1401909

  26. Wang, X., Donaldson, R., Nell, C., Gorniak, P., Ester, M., & Bu, J. (2016). Recommending groups to users using user-group engagement and time-dependent matrix factorization. In Proceedings of the thirtieth AAAI conference on artificial intelligence (pp. 1331–1337). Phoenix, Arizona: AAAI Press.

  27. Zhang, X., Wang, H., Wang, G., & Ma, J. (2019). Heterogeneous network-based group recommendation method for scientific social network. In PACIS 2019 proceedings. https://aisel.aisnet.org/pacis2019/4

  28. Li, L., Peng, W., Kataria, S., Sun, T., & Li, T. (2015). Recommending users and communities in social media. ACM Trans. Knowl. Discov. Data, 10(2), 1:71-17:27. https://doi.org/10.1145/2757282

    Article  Google Scholar 

  29. Akther, A., Kim, H.-N., Rawashdeh, M., & Saddik, A. E. (2012). Applying latent semantic analysis to tag-based community recommendations. In Advances in artificial intelligence (pp. 1–12). Presented at the Canadian Conference on Artificial Intelligence, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30353-1_1

  30. Cheng, Y.-S., Hsu, P.-Y., & Liu, Y.-C. (2018). Identifying and recommending user-interested attributes with values. Industrial Management & Data Systems, 118(4), 765–781. https://doi.org/10.1108/IMDS-04-2017-0164

    Article  Google Scholar 

  31. Guo, C., Li, B., & Tian, X. (2016). Flickr group recommendation using rich social media information. Neurocomputing, 204, 8–16. https://doi.org/10.1016/j.neucom.2015.08.131

    Article  Google Scholar 

  32. Chen, L., Wang, Y., Liang, T., Ji, L., & Wu, J. (2014). Data augmented maximum margin matrix factorization for flickr group recommendation. In V. S. Tseng, T. B. Ho, Z.-H. Zhou, A. L. P. Chen, & H.-Y. Kao (Eds.), Advances in knowledge discovery and data mining (pp. 473–484). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-06608-0_39

    Chapter  Google Scholar 

  33. Wang, Y., Xia, Y., Tang, S., Wu, F., & Zhuang, Y. (2017). Flickr group recommendation with auxiliary information in heterogeneous information networks. Multimedia Systems, 23(6), 703–712. https://doi.org/10.1007/s00530-015-0502-5

    Article  Google Scholar 

  34. Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2017). A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering, 29(1), 17–37. https://doi.org/10.1109/TKDE.2016.2598561

    Article  Google Scholar 

  35. Skopek, J., Schulz, F., & Blossfeld, H.-P. (2011). Who contacts whom? Educational homophily in online mate selection. European Sociological Review, 27(2), 180–195. https://doi.org/10.1093/esr/jcp068

    Article  Google Scholar 

  36. Thelwall, M. (2009). Homophily in MySpace. Journal of the American Society for Information Science and Technology, 60(2), 219–231. https://doi.org/10.1002/asi.20978

    Article  Google Scholar 

  37. Ladhari, R., Massa, E., & Skandrani, H. (2020). YouTube vloggers’ popularity and influence: The roles of homophily, emotional attachment, and expertise. Journal of Retailing and Consumer Services, 54, 102027. https://doi.org/10.1016/j.jretconser.2019.102027

    Article  Google Scholar 

  38. Yang, H., & Gao, H. (2021). User recommendation in online health communities using adapted matrix factorization. Internet Research, 31(6), 2190–2218. https://doi.org/10.1108/INTR-09-2020-0501

    Article  Google Scholar 

  39. Hu, D., & Zhao, J. (2008). Expert Recommendation Via Semantic Social Networks. In ICIS 2008 proceedings. https://aisel.aisnet.org/icis2008/196

  40. Li, X., Wang, M., & Liang, T.-P. (2014). A multi-theoretical kernel-based approach to social network-based recommendation. Decision Support Systems, 65, 95–104. https://doi.org/10.1016/j.dss.2014.05.006

    Article  Google Scholar 

  41. Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. In In VLDB’ 11.

  42. Meng, X., Shi, C., Li, Y., Zhang, L., & Wu, B. (2014). Relevance measure in large-scale heterogeneous networks. In Web technologies and applications (pp. 636–643). Presented at the Asia-Pacific Web Conference, Springer, Cham. https://doi.org/10.1007/978-3-319-11116-2_61

  43. Shi, C., Kong, X., Huang, Y., Yu, P. S., & Wu, B. (2014). HeteSim: A general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data Engineering, 26(10), 2479–2492. https://doi.org/10.1109/TKDE.2013.2297920

    Article  Google Scholar 

  44. Senot, C., Kostadinov, D., Bouzid, M., Picault, J., Aghasaryan, A., & Bernier, C. (2010). Analysis of strategies for building group profiles. In Proceedings of the 18th international conference on user modeling, adaptation, and personalization (pp. 40–51). Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-13470-8_6

  45. Schneider, A., von Krogh, G., & Jäger, P. (2013). “What’s coming next?” Epistemic curiosity and lurking behavior in online communities. Computers in Human Behavior, 29(1), 293–303. https://doi.org/10.1016/j.chb.2012.09.008

    Article  Google Scholar 

  46. Sun, N., Rau, P.P.-L., & Ma, L. (2014). Understanding lurkers in online communities: A literature review. Computers in Human Behavior, 38, 110–117. https://doi.org/10.1016/j.chb.2014.05.022

    Article  Google Scholar 

  47. Aggarwal, C. C. (2016). Content-based recommender systems. In Recommender Systems (Ed.), Aggarwal CC (pp. 139–166). Cham: Springer. https://doi.org/10.1007/978-3-319-29659-3_4

    Chapter  Google Scholar 

  48. Jeh, G., & Widom, J. (2002). SimRank: A measure of structural-context Similarity. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 538–543). New York, NY, USA: ACM. https://doi.org/10.1145/775047.775126

  49. Koren, Y., & Bell, R. (2015). Advances in collaborative filtering. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender systems handbook (pp. 77–118). Springer. https://doi.org/10.1007/978-1-4899-7637-6_3

    Chapter  Google Scholar 

  50. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In Proceedings of the 2Nd ACM conference on electronic commerce (pp. 158–167). New York, NY, USA: ACM. https://doi.org/10.1145/352871.352887

  51. Adomavicius, G., & Zhang, J. (2012). Impact of data characteristics on recommender systems performance. ACM Transactions on Management Information Systems, 3(1), 31–317. https://doi.org/10.1145/2151163.2151166

Download references

Acknowledgements

This work was supported in part by the China Postdoctoral Science Foundation (No. 2020M682757), Guangdong Philosophy and Social Science Planning Project (No. GD21CTS05), Guangzhou Science and Technology Plan Project (No. 202002030384), and South China Normal University Project (No. ZDPY2107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Deng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Deng, W. Leveraging heterogeneous information based on heterogeneous network and homophily theory for community recommendations. Electron Commer Res 23, 2463–2483 (2023). https://doi.org/10.1007/s10660-022-09546-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09546-8

Keywords