Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational photochemistry of retinal proteins

  • GPCR SYMPOSIUM
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

High spectral tunability and quantum yield are the striking features of rhodopsin photochemistry. They rely on a strong and complex interaction of their chromophore, the protonated Schiff base of retinal, with its protein environment. In this article, we review the progress in the computational modeling of these systems, focusing on the optical properties and the excited state dynamics. While the earlier success of atomistic theoretical models was based on the breakthrough in X-ray crystallography and combined quantum mechanical molecular mechanical (QM/MM) methodology, recent advances point out the importance of high-level QM methods and the incorporation of effects that are neglected in conventional QM/MM or ONIOM schemes, like polarization and charge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Which partially have been included in earlier cluster models.

  2. The basis set limit of the MP2 PAs for the PSB6 model is extrapolated from the results of cc-pVTZ, cc-pVQZ, and cc-pV5Z calculations using the Schwartz formula [29].

  3. Note, that HF besides a systematic overestimation due to the lack of dynamic correlation shows the same length-dependency as the post-HF methods.

Abbreviations

B3LYP:

Becke-3-parameter hybrid exchange and Lee–Yang–Parr correlation functional

BLA:

Bond length alternation

bR:

Bacteriorhodopsin

CASSCF:

Complete active space self consistent field method

CASPT2:

Complete active space method with second order perturbation correction

CCSD:

Coupled cluster singles doubles

CHARMM:

Chemistry at HArvard molecular mechanics

(TD)DFT:

(Time-dependent) density functional theory

GGA:

Generalized gradient approximation

HBN:

Hydrogen bonded network

HF:

Hartree–Fock method

LDA:

Local density approximation

MP2:

Second order Møller–Plesset perturbation theory

MRCI:

Multi-reference configuration interaction

OM2:

Orthogonalization method 2

PA:

Proton affinity

ppR:

Pharaonis phoborhodopsin (also called sensory rhodopsin II)

PSB:

Protonated Schiff base

QM/MM:

Combined quantum mechanical molecular mechanical method

SCC-DFTB:

Self-consistent charge density functional based tight binding method

SORCI:

Spectroscopy oriented configuration interaction

References

  1. Logunov SL, Song L, El-Sayed MA (1996) J Phys Chem 100:18586

    Article  CAS  Google Scholar 

  2. Kochendoerfer GG, Lin SW, Sakmar TT, Mathies RA (1999). TIBS 24:300

    CAS  Google Scholar 

  3. Nakanishi K, Balogh-Nair Y, Arnaboldi M, Tsujimoto K, Honig B (1980) J Am Chem Soc 102:7945

    Article  CAS  Google Scholar 

  4. Van der Steen R, Biesheuvel BL, Lugtenburg J (1986) J Am Chem Soc 108:6410

    Article  Google Scholar 

  5. Harbison GS, Mulder PPJ, Pardoen JA (1985) Biochemistry 24:6955

    Article  CAS  Google Scholar 

  6. Harbison GS, Mulder PPJ, Pardoen JA (1985) J Am Chem Soc 107:4810

    Google Scholar 

  7. Wada M, Sakutai M, Inoue Y, Tamura Y, Watanabe Y (1994) J Am Chem Soc 116:1537

    Article  CAS  Google Scholar 

  8. Kakitani H, Kakitani T, Rodman H, Honig B (1985) Photochem Photobiol 41:471

    CAS  Google Scholar 

  9. Kochendoerfer G, Wang Z, Oprian DD, Mathies RA (1997) Biochemistry 36:6577

    Article  CAS  Google Scholar 

  10. Irving CS, Byers GW, Leermake PA (1969) J Am Chem Soc 91:2141

    Article  CAS  Google Scholar 

  11. Irving CS, Byers GW, Leermake PA (1970) Biochemistry 9:858

    Article  CAS  Google Scholar 

  12. Beppu Y, Kakitani T (1994) Photochem Photobiol 59:660

    CAS  Google Scholar 

  13. Birge RR, Murray LM, Pierce BM, Akita H, Balogh-Nair V, Findsen LA, Nakanishi K (1985) Proc Natl Acad Sci USA 82:4117

    Article  CAS  Google Scholar 

  14. Baasov T, Friedman N, Sheves M (1987) Biochemistry 26:3210

    Article  CAS  Google Scholar 

  15. Hu J, Griffin RG, Herzfeld J (1994) Proc Natl Acad Sci USA 91:8880

    Article  CAS  Google Scholar 

  16. Ren L, Martin CH, Wise KJ, Gillespie NB, Luecke H, Lanyi JK, Spudich JL, Birge RR (2001) Biochemistry 40:13906

    Article  CAS  Google Scholar 

  17. Rajamani R, Gao J (2002) J Comp Chem 23(1):96

    Article  CAS  Google Scholar 

  18. Dinner AR, Lopez X, Karplus M (2003) Theor Chem Acc 109:118

    CAS  Google Scholar 

  19. Vreven T, Morokuma K (2003) Theor Chem Acc 109:125

    CAS  Google Scholar 

  20. Hayashi S, Ohmine I (2000) J Phys Chem B 104:10678

    Article  CAS  Google Scholar 

  21. Houjou H, Koyama K, Wada M, Sameshima K, Inoue Y, Sakurai M (1998) Chem Phys Lett 294:162

    Article  CAS  Google Scholar 

  22. Warshel A, Chu ZT (2001) J Phys Chem B 105:9857

    Article  CAS  Google Scholar 

  23. Zhou H, Tajkhorshid E, Frauenheim Th, Suhai S, Elstner M (2002) Chem Phys 277:91

    Article  CAS  Google Scholar 

  24. Wanko M, Hoffmann M, Strodel P, Koslowski A, Thiel W, Neese F, Frauenheim T, Elstner M (2005) J Phys Chem B 109:3606

    Article  CAS  Google Scholar 

  25. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  26. Okada T, Sugihara M, Bondar A, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571

    Article  CAS  Google Scholar 

  27. Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends E-J, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104(20):4755

    Article  CAS  Google Scholar 

  28. Van Gisbergen SJA, Fonseca Guerra C, Baerends EJ (2000) J Comp Chem 21(16):1511

    Article  CAS  Google Scholar 

  29. Martin JML (1996) Chem Phys Lett 259(3):669

    Article  CAS  Google Scholar 

  30. N. Bondar et al. (2007) (to be published)

  31. Bondar A, Fischer S, Smith JC, Elstner M, Suhai S (2004) J Am Chem Soc 126:14668

    Article  CAS  Google Scholar 

  32. Bondar A, Elstner M, Suhai S, Smith JC, Fischer S (2004) Structure 12:1281

    Article  CAS  Google Scholar 

  33. Koslowski A, Beck ME, Thiel W (2003) J Comput Chem 24:714

    Article  CAS  Google Scholar 

  34. Neese F (2003) J Chem Phys 119:9428

    Article  CAS  Google Scholar 

  35. Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M (2006) J Am Chem Soc 128:10808

    Article  CAS  Google Scholar 

  36. Birge RR, Zhang C (1990) J Chem Phys 92:7178

    Article  CAS  Google Scholar 

  37. Chizhov I, Schmies G, Seidel R, Sydor JR, Lüttenberg B, Engelhard M (1998) Biophys J 75:999

    CAS  Google Scholar 

  38. Shimono K, Iwamoto M, Sumi M, Kamo N (2000) Photochem Photobiol 72:141

    Article  CAS  Google Scholar 

  39. Shimono K, Kitami M, Iwamoto M, Kamo N (2000) Biophys Chem 87:225

    Article  CAS  Google Scholar 

  40. Shimono K, Furutani Y, Kandori H, Kamo N (2002) Biochemistry 41:6504

    Article  CAS  Google Scholar 

  41. Shimono K, Iwamoto M, Sumi M, Kamo N (2001) Biochim Biophys Acta 1515:92

    Article  CAS  Google Scholar 

  42. Shimono K, Hayashi T, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2003) J Biol Chem 278:23882

    Article  CAS  Google Scholar 

  43. Kandori H, Furutani Y, Shimono K, Shichida Y, Kamo N (2001) Biochemistry 40:15693

    Article  CAS  Google Scholar 

  44. Houjou H, Inoue Y, Sakurai M (2001) J Phys Chem B 105:867

    Article  CAS  Google Scholar 

  45. Wang Q, Schoenlein RW, Peteanu LA, Mathies RA, Shank CV (1994) Science 266:422

    Article  CAS  Google Scholar 

  46. Atkinson GH, Ujj L, Zhou YD (2000) J Phys Chem A 104:413

    Article  CAS  Google Scholar 

  47. Herbst J, Heyne K, Diller R (2002) Science 294:822

    Article  Google Scholar 

  48. Terentis AC, Zhou Y, Atkinson GH (2003) J Phys Chem A 107:10787

    Article  CAS  Google Scholar 

  49. Schenkl S, van Mourik F, Friedman N, Sheves M, Schlesinger R, Haacke S, Chergui M (2006) Proc Natl Acad Sci USA 103(11):4101

    Article  CAS  Google Scholar 

  50. Wanko M, Garavelli M, Bernardi F, Niehaus TA, Frauenheim Th, Elstner M (2004) J Chem Phys 120:1674

    Article  CAS  Google Scholar 

  51. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M (1997) J Am Chem Soc 119:6891

    Article  CAS  Google Scholar 

  52. Vreven T, Bernardi F, Garavelli M, Olivucci M, Robb MA, Schlegel HB (1997) J Am Chem Soc 119:12687

    Article  CAS  Google Scholar 

  53. Cembran A, Bernardi F, Olivucci M, Garavelli M (2003) J Am Chem Soc 125:12509

    Article  Google Scholar 

  54. Cembran A, Bernardi F, Olivucci M, Garavelli M (2005) Proc Natl Acad Sci USA 102(18):6255

    Article  CAS  Google Scholar 

  55. Garavelli M, Vreven T, Celani P, Bernardi F, Robb M, Olivucci M (1998) J Am Chem Soc 120:1285

    Article  CAS  Google Scholar 

  56. Garavelli M, Bernardi F, Robb MA, Olivucci M (1999) J Mol Struct 463:59

    Article  CAS  Google Scholar 

  57. Tsiper EV, Chernyak V, Tretiak S, Mukamel S (1999) J Chem Phys 110(17):8328

    Article  CAS  Google Scholar 

  58. González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb MA, Olivucci M (2000) Proc Natl Acad Sci USA 97(17):9379

    Article  Google Scholar 

  59. Migani A, Robb MA, Olivucci M (2003) J Am Chem Soc 125:2804

    Article  CAS  Google Scholar 

  60. Weingart O, Migani A, Olivucci M, Robb MA, Buss V, Hunt P (2004) J Phys Chem A 108:4685

    Article  CAS  Google Scholar 

  61. Hayashi S, Tajkhorshid E, Schulten K (2003) Biophys J 85:1440

    Article  CAS  Google Scholar 

  62. Page CS, Olivucci M (2003) J Comput Chem 24:298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Elstner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanko, M., Hoffmann, M., Frauenheim, T. et al. Computational photochemistry of retinal proteins. J Comput Aided Mol Des 20, 511–518 (2006). https://doi.org/10.1007/s10822-006-9069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9069-8

Keywords