Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining fragment homology modeling with molecular dynamics aims at prediction of Ca2+ binding sites in CaBPs

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The family of calcium-binding proteins (CaBPs) consists of dozens of members and contributes to all aspects of the cell’s function, from homeostasis to learning and memory. However, the Ca2+-binding mechanism is still unclear for most of CaBPs. To identify the Ca2+-binding sites of CaBPs, this study presented a computational approach which combined the fragment homology modeling with molecular dynamics simulation. For validation, we performed a two-step strategy as follows: first, the approach is used to identify the Ca2+-binding sites of CaBPs, which have the EF-hand Ca2+-binding site and the detailed binding mechanism. To accomplish this, eighteen crystal structures of CaBPs with 49 Ca2+-binding sites are selected to be analyzed including calmodulin. The computational method identified 43 from 49 Ca2+-binding sites. Second, we performed the approach to large-conductance Ca2+-activated K+ (BK) channels which don’t have clear Ca2+-binding mechanism. The simulated results are consistent with the experimental data. The computational approach may shed some light on the identification of Ca2+-binding sites in CaBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Batistic O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta 1820:1283–1293

    Article  CAS  Google Scholar 

  2. Haiech J, Audran E, Feve M, Ranjeva R, Kilhoffer MC (2011) Revisiting intracellular calcium signaling semantics. Biochimie 93:2029–2037

    Article  CAS  Google Scholar 

  3. Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47:140–149

    Article  CAS  Google Scholar 

  4. Ramadan JW, Steiner SR, O’Neill CM, Nunemaker CS (2011) The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes. Cell Calcium 50:481–490

    Article  CAS  Google Scholar 

  5. Tam BK, Shin JH, Pfeiffer E, Matsudaira P, Mahadevan L (2009) Calcium regulation of an actin spring. Biophys J 97:1125–1129

    Article  CAS  Google Scholar 

  6. Bazzazi H, Kargacin ME, Kargacin GJ (2003) Ca2 + regulation in the near-membrane microenvironment in smooth muscle cells. Biophys J 85:1754–1765

    Article  CAS  Google Scholar 

  7. Shin DW, Pan Z, Bandyopadhyay A, Bhat MB, Kim DH et al (2002) Ca(2 +)-dependent interaction between FKBP12 and calcineurin regulates activity of the Ca(2 +) release channel in skeletal muscle. Biophys J 83:2539–2549

    Article  CAS  Google Scholar 

  8. Perochon A, Aldon D, Galaud JP, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93:2048–2053

    Article  CAS  Google Scholar 

  9. Donato R (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33:637–668

    Article  CAS  Google Scholar 

  10. Erskine PT, Beaven GD, Hagan R, Findlow IS, Werner JM et al (2006) Structure of the neuronal protein calexcitin suggests a mode of interaction in signalling pathways of learning and memory. J Mol Biol 357:1536–1547

    Article  CAS  Google Scholar 

  11. Lee US, Cui J (2010) BK channel activation: structural and functional insights. Trends Neurosci 33:415–423

    Article  CAS  Google Scholar 

  12. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  Google Scholar 

  13. Grabarek Z (2011) Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins. Biochim Biophys Acta 1813:913–921

    Article  CAS  Google Scholar 

  14. Grabarek Z (2005) Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective. J Mol Biol 346:1351–1366

    Article  CAS  Google Scholar 

  15. Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  Google Scholar 

  16. Pappa H, Murray-Rust J, Dekker LV, Parker PJ, McDonald NQ (1998) Crystal structure of the C2 domain from protein kinase C-delta. Structure 6:885–894

    Article  CAS  Google Scholar 

  17. Bao L, Kaldany C, Holmstrand EC, Cox DH (2004) Mapping the BKCa channel’s “Ca2+ bowl”: side-chains essential for Ca2+ sensing. J Gen Physiol 123:475–489

    Article  CAS  Google Scholar 

  18. Yang YD, Cho H, Koo JY, Tak MH, Cho Y et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  CAS  Google Scholar 

  19. Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884

    Article  CAS  Google Scholar 

  20. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2 + -activation apparatus at 3.0 A resolution. Science 329:182–186

    Article  CAS  Google Scholar 

  21. Roberts E, Eargle J, Wright D, Luthey-Schulten Z (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 7:382

    Article  Google Scholar 

  22. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, et al. (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: Unit 5 6

  23. Laskowski RA, Macarthu MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  24. Bashford D (1997) An object-oriented programming suite for electrostatic effects in biological molecules An experience report on the MEAD project. Sci Comput Object-Oriented Parallel Environ Lecture Notes Comput Sci 1343:233–240

    Article  Google Scholar 

  25. Bashford D, Gerwert K (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 224(2):473–486

    Article  CAS  Google Scholar 

  26. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  27. MacKerell AD, Bashford D, Bellott, Dunbrack RL (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  28. Kal’e Laxmikant, Skeel R, Bhandarkar M, Brunner R, Gursoy A et al (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    Article  Google Scholar 

  29. Procyshyn RM, Reid RE (1994) A structure/activity study of calcium affinity and selectivity using a synthetic peptide model of the helix-loop-helix calcium-binding motif. J Biol Chem 269:1641–1647

    CAS  Google Scholar 

  30. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA (1992) Calmodulin structure refined at 1.7 A resolution. J Mol Biol 228:1177–1192

    Article  CAS  Google Scholar 

  31. Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca(2 +)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  CAS  Google Scholar 

  32. Cui J, Yang H, Lee US (2009) Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66:852–875

    Article  CAS  Google Scholar 

  33. Zeng XH, Xia XM, Lingle CJ (2005) Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J Gen Physiol 125:273–286

    Article  CAS  Google Scholar 

  34. Kim HJ, Lim HH, Rho SH, Bao L, Lee JH et al (2008) Modulation of the conductance-voltage relationship of the BK Ca channel by mutations at the putative flexible interface between two RCK domains. Biophys J 94:446–456

    Article  CAS  Google Scholar 

  35. Kranjc A, Anselm C, Carloni P, Blaney FE (2007) Structural models of human big conductance calcium- and voltage-gated potassium channels. Comput Phys Commun 177:21–26

    Article  CAS  Google Scholar 

  36. Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large-conductance Ca(2 +)-gated K(+) channel. Nature 466:393–397

    Article  CAS  Google Scholar 

  37. Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2012) Open structure of the Ca2 + gating ring in the high-conductance Ca2 + -activated K + channel. Nature 481:94–97

    Article  CAS  Google Scholar 

  38. Bhattacharya A, Padhan N, Jain R, Bhattacharya S (2006) Calcium-binding proteins of Entamoeba histolytica. Arch Med Res 37:221–225

    Article  CAS  Google Scholar 

  39. Liu T, Altman RB (2009) Prediction of calcium-binding sites by combining loop-modeling with machine learning. BMC Struct Biol 9:72

    Article  Google Scholar 

  40. Wang X, Zhao K, Kirberger M, Wong H, Chen G et al (2010) Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes. Protein Sci 19:1180–1190

    Article  CAS  Google Scholar 

  41. Yang J, Krishnamoorthy G, Saxena A, Zhang G, Shi J et al (2010) An Epilepsy/Dyskinesia-Associated Mutation Enhances BK Channel Activation by Potentiating Ca2 + Sensing. Neuron 66:871–883

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by National Natural Science Foundation of China Grants 11175055 to YZ, 11247010 to HA, and by Natural Science Foundation of Hebei Province grant C2012202079 to HA, A2011202129 to MJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, C., Cao, T., Li, J. et al. Combining fragment homology modeling with molecular dynamics aims at prediction of Ca2+ binding sites in CaBPs. J Comput Aided Mol Des 27, 697–705 (2013). https://doi.org/10.1007/s10822-013-9668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9668-0

Keywords