Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Cloud manufacturing (CMfg) is a new service-oriented manufacturing paradigm in which shared resources are integrated and encapsulated as manufacturing services. When a single service is not able to meet some manufacturing requirement, a composition of multiple services is then required via CMfg. Service composition and optimal selection (SCOS) is a key technique for creating an on-demand quality of service (QoS)-optimal efficient manufacturing service composition to satisfy various user requirements. Given the number of services with the same functionality and a similar level of QoS, SCOS has been seen as a key challenge in CMfg research. One effective approach to solving SCOS problems is to use service domain features (SDF) through investigating the probability of services being used for a specific requirement from multiple perspectives. The approach can result in a division of the service space and then help streamline the service space with large-scale candidate services. The approach can also search for optimal subspaces that most likely contribute to an overall optimal solution. Accordingly, this paper develops an SDF-oriented genetic algorithm to effectively create a manufacturing service composition with large-scale candidate services. Fine-grained SDF definitions are developed to divide the service space. SDF-based optimization strategies are adopted. The novelty of the proposed algorithm is presented based on Bayes’ theorem. The effectiveness of the proposed algorithm is validated by solving three real-world SCOS problems in a private CMfg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bravo, M. (2014). Similarity measures for web service composition models. International Journal on Web Service Computing,5, 495–505.

    Google Scholar 

  • Chen, F., Dou, R., Li, M., & Wu, H. (2016a). A flexible QoS-aware Web service composition method by multi-objective optimization in cloud manufacturing. Computers & Industrial Engineering,99, 423–431.

    Article  Google Scholar 

  • Chen, R., Guo, J., & Bao, F. (2016b). Trust management for SOA-based IoT and its application to service composition. IEEE Transactions on Services Computing,9(3), 482–495.

    Article  Google Scholar 

  • Fatahi Valilai, O., & Houshmand, M. (2014). A platform for optimisation in distributed manufacturing enterprises based on cloud manufacturing paradigm. International Journal of Computer Integrated Manufacturing,27(11), 1031–1054.

    Article  Google Scholar 

  • Hua, G., Zhang, L., Liu, Y., Tao, F., Shu, M., & Mu, S. (2014). A discovery method of service-correlation for service composition in virtual enterprise. European Journal of Industrial Engineering,8(5), 579–618.

    Article  Google Scholar 

  • Huang, J., Li, S., Duan, Q., Yu, R., & Yu, S. (2016). QoS correlation-aware service composition for unified network-cloud service provisioning. In Global communications conference (GLOBECOM), 2016 IEEE (pp. 1–6). IEEE.

  • Huang, B., Li, C., & Tao, F. (2014). A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system. Enterprise Information Systems,8(4), 445–463.

    Article  Google Scholar 

  • Jiang, Y. Z., Hao, Z. F., Zhang, Y. S., Huang, H., Wang, Y. L., & He, H. J. (2014). Bayesian forecasting evolutionary algorithm. Chinese Journal of Computers, 37(8), 1846–1858.

    Google Scholar 

  • Jin, H., Yao, X., & Chen, Y. (2017). Correlation-aware QoS modeling and manufacturing cloud service composition. Journal of Intelligent Manufacturing,28(8), 1947–1960.

    Article  Google Scholar 

  • Kai, C., Guohu, C., & Hua, J. (2014). Guided self-adaptive evolutionary genetic algorithm. Journal of Electronics & Information Technology,36(8), 1884–1890.

    Google Scholar 

  • Karim, R., Ding, C., & Miri, A. (2015). End-to-end QoS prediction of vertical service composition in the cloud. In 2015 IEEE 8th international conference on cloud computing (CLOUD) (pp. 229–236). IEEE.

  • Kubler, S., Holmström, J., Främling, K., & Turkama, P. (2016). Technological theory of cloud manufacturing. Service orientation in holonic and multi-agent manufacturing. Berlin: Springer.

    Google Scholar 

  • Lemos, A. L., Daniel, F., & Benatallah, B. (2016). Web service composition: A survey of techniques and tools. ACM Computing Surveys (CSUR),48(3), 33.

    Google Scholar 

  • Li, B. H., Zhang, L., Wang, S. L., Tao, F., Cao, J. W., JiangXD, Song X, et al. (2010). Cloud manufacturing: A new service-oriented networked manufacturing model. Computer Integrated Manufacturing Systems,16(1), 1–16.

    Google Scholar 

  • Liu, J., Hao, S., Zhang, X., Wang, C., Sun, J., Yu, H., & Li, Z. (2016). Research on web service dynamic composition based on execution dependency relationship. In 2016 IEEE world congress on services (SERVICES) (pp. 113–117). IEEE.

  • Liu, Z., & Xu, X. (2014). S-ABC-A Service-oriented artificial bee colony algorithm for global optimal services selection in concurrent requests environment. In 2014 IEEE international conference on web services (ICWS) (pp. 503–509). IEEE.

  • Lu, Y., & Xu, X. (2017). A semantic web-based framework for service composition in a cloud manufacturing environment. Journal of Manufacturing Systems,42, 69–81.

    Article  Google Scholar 

  • Morgan, J., & O’Donnell, G. E. (2017). Enabling a ubiquitous and cloud manufacturing foundation with field-level service-oriented architecture. International Journal of Computer Integrated Manufacturing,30(4–5), 442–458.

    Google Scholar 

  • Pisching, M. A., Junqueira, F., Filho, D. J. S., & Miyagi, P. E. (2015). Service composition in the cloud-based manufacturing focused on the industry 4.0. Technological innovation for cloud-based engineering systems. Berlin: Springer.

    Google Scholar 

  • Ren, L., Zhang, L., Wang, L., et al. (2017). Cloud manufacturing: Key characteristics and applications[J]. International Journal of Computer Integrated Manufacturing, 30(6), 501–515.

    Article  Google Scholar 

  • Seghir, F., & Khababa, A. (2016). A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition. Journal of Intelligent Manufacturing,29, 1–20.

    Google Scholar 

  • Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014a). CCIoT-CMfg: Cloud computing and internet of things-based cloud manufacturing service system. IEEE Transactions on Industrial Informatics,10(2), 1435–1442.

    Article  Google Scholar 

  • Tao, F., Cheng, Y., Zhang, L., & Nee, A. Y. C. (2017). Advanced manufacturing systems: Socialization characteristics and trends. Journal of Intelligent Manufacturing,28(5), 1079–1094.

    Article  Google Scholar 

  • Tao, F., LaiLi, Y., Xu, L., & Zhang, L. (2013). FC-PACO-RM: A parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Transactions on Industrial Informatics,9(4), 2023–2033.

    Article  Google Scholar 

  • Tao, F., Zhang, L., Liu, Y., Cheng, Y., Wang, L., & Xu, X. (2015). Manufacturing service management in cloud manufacturing: Overview and future research directions. Journal of Manufacturing Science and Engineering,137(4), 040912.

    Article  Google Scholar 

  • Tao, F., Zhao, D., Yefa, H., & Zhou, Z. (2010). Correlation-aware resource service composition and optimal-selection in manufacturing grid. European Journal of Operational Research,201(1), 129–143.

    Article  Google Scholar 

  • Tao, F., Zuo, Y., Da Xu, L., & Zhang, L. (2014b). IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Transactions on Industrial Informatics,10(2), 1547–1557.

    Article  Google Scholar 

  • Van Nguyen, S., Vo, H. D., & Hung, P. N. (2015). A correlation-aware negotiation approach for service composition. In Proceedings of the sixth international symposium on information and communication technology (pp. 210–216). ACM.

  • Wu, Q., Zhu, Q., & Zhou, M. (2014). A correlation-driven optimal service selection approach for virtual enterprise establishment. Journal of Intelligent Manufacturing,25(6), 1441–1453.

    Article  Google Scholar 

  • Xiang, F., Jiang, G., Xu, L., & Wang, N. (2016). The case-library method for service composition and optimal selection of big manufacturing data in cloud manufacturing system. The International Journal of Advanced Manufacturing Technology,84(1–4), 59–70.

    Article  Google Scholar 

  • Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing,28(1), 75–86.

    Article  Google Scholar 

  • Xu, X., Liu, Z., Wang, Z., Sheng, Q. Z., Yu, J., & Wang, X. (2017). S-ABC: A paradigm of service domain-oriented artificial bee colony algorithms for service selection and composition. Future Generation Computer Systems,68, 304–319.

    Article  Google Scholar 

  • Xue, X., Liu, Z. Z., & Wang, S. F. (2016). Manufacturing service composition for the mass customised production. International Journal of Computer Integrated Manufacturing,29(2), 119–135.

    Google Scholar 

  • Ye, Z., Mistry, S., Bouguettaya, A., & Dong, H. (2016). Long-term QoS-aware cloud service composition using multivariate time series analysis. IEEE Transactions on Services Computing,9(3), 382–393.

    Article  Google Scholar 

  • Zhang, M. W., Wei, W. J., Zhang, B., Zhang, X. Z., & Zhu, Z. L. (2008). Research on service selection approach based on composite service execution information. Chinese Journal of Computers,31(8), 1398–1411.

    Article  Google Scholar 

  • Zheng, H., Feng, Y., & Tan, J. (2016). A fuzzy QoS-aware resource service selection considering design preference in cloud manufacturing system. International Journal of Advanced Manufacturing Technology,84(1–4), 371–379.

    Article  Google Scholar 

  • Zhou, J., & Yao, X. (2017). DE-caABC: Differential evolution enhanced context-aware artificial bee colony algorithm for service composition and optimal selection in cloud manufacturing. The International Journal of Advanced Manufacturing Technology,90(1–4), 1085–1103.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the research projects the National Natural Science Foundation of China (NSFC) (No. 71571056) and the Scientific Research Funds of Huaqiao University (16BS304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. 1.

    Proof of Lemma2. A set of values of \( P_{T - GA} \left( {B/A_{h}^{\left( 0 \right)} } \right) \) can be derived based on the formula in Property 1 for calculating \( P_{T - GA} \left( {B/A_{h}^{\left( 0 \right)} } \right) \) and sorted in ascending order \( 0 \le P_{T - GA} \left( {B/A_{1}^{\left( 0 \right)} } \right) \le P_{T - GA} \left( {B/A_{2}^{\left( 0 \right)} } \right) \le \cdots \le P_{T - GA} \left( {B/A_{\text{h}}^{\left( 0 \right)} } \right) \), and then we randomly split the set of values as \( 0 \le P_{T - GA} \left( {B/A_{1}^{\left( 0 \right)} } \right) \le P_{T - GA} \left( {B/A_{2}^{\left( 0 \right)} } \right) \le \cdots \le P_{T - GA} \left( {B/A_{h - u}^{\left( 0 \right)} } \right) \le P_{T - GA} \left( {B/A_{1}^{\left( 0 \right)} } \right) \le P_{T - GA} \left( {B/A_{2}^{\left( 0 \right)} } \right) \le \cdots \le P_{T - GA} \left( {B/A_{u}^{\left( 0 \right)} } \right) \). We assure that the optimal subspace is one of subspaces among u subspaces with bigger values of \( P_{T - GA} \left( {B/A_{u}^{\left( 0 \right)} } \right) \) and use all solutions from u subspaces to initialize the population of SDFs-GA. Based on the Property 1, we can have

    $$ \begin{aligned} P_{SDF - GA} \left( {A^{\left( 0 \right)} } \right) = & \mathop \sum \limits_{j = 1}^{u} P_{SDF - GA} \left( {A_{j}^{\left( 0 \right)} } \right) = \frac{{\mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {B/A_{i}^{\left( 0 \right)} } \right) \times P_{T - GA} \left( {A_{i}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ = & \frac{{\mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{h - u} \frac{{P_{T - GA} \left( {B/A_{i}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{i}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ \end{aligned} $$

Because of that the value of \( P_{T - GA} \left( {B/A_{i}^{\left( 0 \right)} } \right) \) is smaller than the value of \( \hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right) \), so we can have

$$ \begin{aligned} P_{SDF - GA} \left( {A^{\left( 0 \right)} } \right) \ge & \frac{{\mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {A_{i}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ = & \frac{{\mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}}{{1 - \mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} \frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ = & \frac{{\mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} \left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}}{{1 + \mathop \sum \nolimits_{j = 1}^{u} \left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ \end{aligned} $$

On account of \( \sum\nolimits_{i = 1}^{h - u} {P_{T - GA} } \left( {A_{i}^{\left( t \right)} } \right) + \sum\nolimits_{j = 1}^{u} {P_{T - GA} } \left( {A_{j}^{\left( t \right)} } \right) = 1 \), we can have

$$ \begin{aligned} P_{SDF - GA} \left( {A^{\left( 0 \right)} } \right) = & \frac{{1 + \mathop \sum \nolimits_{j = 1}^{u} \left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right) \times P_{GA} \left( {A_{j}^{\left( 0 \right)} } \right) - \mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {A_{i}^{\left( 0 \right)} } \right)}}{{1 + \mathop \sum \nolimits_{j = 1}^{u} \left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ = & 1 - \frac{{\mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {A_{i}^{\left( 0 \right)} } \right)}}{{1 + \mathop \sum \nolimits_{j = 1}^{u} \left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right) \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right)}} \\ \end{aligned} $$

Because of \( \sum\nolimits_{j = 1}^{u} {\left( {\frac{{P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}}{{\hbox{min} P_{T - GA} \left( {B/A_{j}^{\left( 0 \right)} } \right)}} - 1} \right)} \times P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right) \ge 0 \), so we can have

$$ P_{SDF - GA} \left( {A^{\left( 0 \right)} } \right) \ge 1 - \mathop \sum \limits_{i = 1}^{h - u} P_{GT - A} \left( {A_{i}^{\left( 0 \right)} } \right) = \mathop \sum \limits_{j = 1}^{u} P_{T - GA} \left( {A_{j}^{\left( 0 \right)} } \right) = P_{T - GA} \left( {A^{\left( 0 \right)} } \right) $$
  1. 2.

    Proof of Lemma3. Based on the Property 1, we can have

    $$ \begin{aligned} P_{T - GA} \left( {A^{\left( 1 \right)} } \right) = & \frac{{\mathop \sum \nolimits_{j = 1}^{u} P\left( {B/A_{j}^{\left( 0 \right)} } \right)P\left( {A_{j}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{h - u} P\left( {B/A_{i}^{\left( 0 \right)} } \right)P\left( {A_{i}^{\left( 0 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} P\left( {B/A_{j}^{\left( 0 \right)} } \right)P\left( {A_{j}^{\left( 0 \right)} } \right)}} \\ = & \frac{1}{{\frac{{\mathop \sum \nolimits_{i = 1}^{h - u} P\left( {B/A_{i}^{\left( 0 \right)} } \right)P\left( {A_{i}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{j = 1}^{u} P\left( {B/A_{j}^{\left( 0 \right)} } \right)P\left( {A_{j}^{\left( 0 \right)} } \right)}} + 1}} \\ \end{aligned} $$

Because that the operators of SDFs-GA use feature sets generated from \( A_{GA}^{\left( 1 \right)} \), we can have

$$ \begin{aligned} P_{SDF - GA} \left( {A^{\left( 1 \right)} } \right) = & \frac{{\mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {B/A_{j}^{\left( 1 \right)} } \right)P\left( {A_{j}^{\left( 0 \right)} } \right)}}{{\mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {B/A_{i}^{\left( 1 \right)} } \right)P\left( {A_{i}^{\left( 1 \right)} } \right) + \mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {B/A_{j}^{\left( 1 \right)} } \right)P_{GA} \left( {A_{j}^{\left( 1 \right)} } \right)}} \\ = & \frac{1}{{\frac{{\mathop \sum \nolimits_{i = 1}^{h - u} P_{T - GA} \left( {B/A_{i}^{\left( 1 \right)} } \right)P\left( {A_{i}^{\left( 1 \right)} } \right)}}{{\mathop \sum \nolimits_{j = 1}^{u} P_{T - GA} \left( {B/A_{j}^{\left( 1 \right)} } \right)P\left( {A_{j}^{\left( 1 \right)} } \right)}} + 1}} \\ \end{aligned} $$

Based on the Lemma 2 we can get that \( \sum\nolimits_{j = 1}^{u} {P_{GA} } \left( {B/A_{j}^{\left( 1 \right)} } \right)P\left( {A_{j}^{\left( 1 \right)} } \right) \ge \sum\nolimits_{j = 1}^{u} {P_{GA} } \left( {B/A_{j}^{\left( 0 \right)} } \right)P\left( {A_{j}^{\left( 0 \right)} } \right) \), so we can have

$$ P_{SDF - GA} \left( {A^{\left( 1 \right)} } \right) \ge P_{GA} \left( {A^{\left( 1 \right)} } \right) $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., He, T., Wang, Z. et al. SDF-GA: a service domain feature-oriented approach for manufacturing cloud service composition. J Intell Manuf 31, 681–702 (2020). https://doi.org/10.1007/s10845-019-01472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-019-01472-1

Keywords