Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The majority of Combinatorial Optimization Problems (COPs) are defined in the discrete space. Hence, proposing an efficient algorithm to solve the problems has become an attractive subject in recent years. In this paper, a meta-heuristic algorithm based on Binary Particle Swarm Algorithm (BPSO) and the governing Newtonian motion laws, so-called Binary Accelerated Particle Swarm Algorithm (BAPSA) is offered for discrete search spaces. The method is presented in two global and local topologies and evaluated on the 0–1 Multidimensional Knapsack Problem (MKP) as a famous problem in the class of COPs and NP-hard problems. Besides, the results are compared with BPSO for both global and local topologies as well as Genetic Algorithm (GA). We applied three methods of Penalty Function (PF) technique, Check-and-Drop (CD) and Improved Check-and-Repair Operator (ICRO) algorithms to solve the problem of infeasible solutions in the 0–1 MKP. Experimental results show that the proposed methods have better performance than BPSO and GA especially when ICRO algorithm is applied to convert infeasible solutions to feasible ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook W.J., Cunningham W.H., Pulleyblank W.R., Schrijver A.: Combinatorial Optimization. Springer, Berlin (1997)

    Book  Google Scholar 

  2. Neapolitan R., Naimipour K.: Foundations of Algorithms Using C++ Pseudo Code, 3rd edn. Jones and Bartlett, Massachusetts (2004)

    Google Scholar 

  3. Chu P.C., Beasley J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)

    Article  Google Scholar 

  4. Snyder L.V., Daskin M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174, 38–53 (2006)

    Article  Google Scholar 

  5. Din D.: Heuristic and simulated annealing algorithms for wireless ATM backbone network design problem. J. Inf. Sci. Eng. 24, 483–501 (2008)

    Google Scholar 

  6. Andresen M., Bräsel H., Mörig M., Tusch J., Werner F., Willenius P.: Simulated annealing and genetic algorithms for minimizing mean flow time in an open shop. Math. Comput. Model. 48, 1279–1293 (2008)

    Article  Google Scholar 

  7. Engin O., Döyen A.: A new approach to solve hybrid flowshop scheduling problems by artificial immune system. Future Gener. Comput. Syst. 20(6), 1083–1095 (2004)

    Article  Google Scholar 

  8. Du W., Du H., Li M.: Hyper-mutation antibody clone algorithms for TSP. J. Xidian Univ. 36, 527–534 (2009)

    Google Scholar 

  9. Kong M., Tian P., Kao Y.C.: A new ant colony optimization algorithm for the multidimensional Knapsack problem. Comput. Oper. Res. 35(8), 2672–2683 (2008)

    Article  Google Scholar 

  10. Yang J., Shi X., Marchese M., Liang Y.: An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 18(11), 1417–1422 (2008)

    Article  Google Scholar 

  11. Labed S., Gherboudj A., Chikhi S.: A modified hybrid particle swarm optimization algorithm for multidimensional knapsack problem. Int. J. Comput. Appl. 34(2), 11–16 (2011)

    Google Scholar 

  12. Shi X.H., Liang Y.C., Lee H.P., Lu C., Wang Q.X.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103(5), 169–176 (2007)

    Article  Google Scholar 

  13. Fadlaoui K., Galinier P.: A tabu search algorithm for the covering design problem. J. Heuristics 17(6), 659–674 (2011)

    Article  Google Scholar 

  14. James T., Rego C., Glover F.: Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part A 39(3), 579–596 (2009)

    Article  Google Scholar 

  15. Zhu W., Curry J., Marquez A.: SIMD tabu search for the quadratic assignment problem with graphics hardware acceleration. Int. J. Prod. Res. 48, 1035–1047 (2009)

    Article  Google Scholar 

  16. Leung Y., Gao Y., Xu Z.B.: Degree of population diversity—a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Trans. Neural Netw. 8(5), 1165–1176 (1997)

    Article  Google Scholar 

  17. Hrstka O., Kučerová A.: Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Adv. Eng. Softw. 35, 237–246 (2004)

    Article  Google Scholar 

  18. Moslemipour G., Lee T.S., Rilling D.: A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 60, 11–27 (2012)

    Article  Google Scholar 

  19. Gao W.F., Liu S.Y., Huang L.L.: Particle swarm optimization with chaotic opposition based population initialization and stochastic search technique. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4316–4327 (2012)

    Article  Google Scholar 

  20. Mendes R., Kennedy J., Neves J.: The fully informed particle swarm: simpler maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  21. Liang J.J., Qin A.K., Suganthan P.N., Baskar S.: comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  22. Zhan Z.H., Zhang J., Li Y., Chung H.S.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B 39(6), 1362–1381 (2009)

    Article  Google Scholar 

  23. Holland J.H: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan (1975)

    Google Scholar 

  24. Lau H.C.W., Chan T.M., Tsui W.T., Pang W.K.: Application of genetic algorithms to solve the multidepot vehicle routing problem. IEEE Trans. Autom. Sci. Eng. 7(2), 383–392 (2010)

    Article  Google Scholar 

  25. Ahuja P.K., Orlin J.B., Tiwari A.: A greedy genetic algorithm for the quadratic assignment problem. Comput. Oper. Res. 27((10), 917–934 (2000)

    Article  Google Scholar 

  26. Zhang Q., Manier H., Manier M.A.: A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraint and bounded processing times. Comput. Oper. Res. 39, 1713–1723 (2012)

    Article  Google Scholar 

  27. Lee Z.J., Su S.F., Chiang C.C., Liu K.H.: Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl. Soft Comput. 8(1), 55–78 (2008)

    Article  Google Scholar 

  28. Defersha F.M., Chen M.Y.: A hybrid genetic algorithm for flowshop lot streaming with setups and variable sublots. Int. J. Prod. Res. 48(6), 1705–1726 (2010)

    Article  Google Scholar 

  29. Kirkpatrick S., Gelatto C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  Google Scholar 

  30. Defersha F.M., Chen M.: A simulated annealing algorithm for dynamic system reconfiguration and production planning in cellular manufacturing. Int. J. Manuf. Tech. Manage. 17(1–2), 103–124 (2009)

    Google Scholar 

  31. Sun Y., Zhang M., Liu W., Li H., Zhang L.: Permutation algorithm with simulated annealing for laser antimissile problem. Appl. Mech. Mater. 44(47), 265–269 (2011)

    Google Scholar 

  32. Safari E., Sadjadi S.J., Shahanaghi K.: Scheduling flowshops with condition-based maintenance constraint to minimize expected makespan. Int. J. Adv. Manuf. Technol. 46, 757–767 (2010)

    Article  Google Scholar 

  33. Hashemi S.M., Rezapour M., Moradi A.: An effective hybrid PSO-based algorithm for planning UMTS terrestrial access networks. Eng. Optim. 42(3), 251–311 (2010)

    Article  Google Scholar 

  34. Glover F., McMillan C.: The general employee scheduling problem: an integration of MS and AI. Comput. Oper. Res. 13(5), 563–573 (1986)

    Article  Google Scholar 

  35. Glover F.: Tabu search—part 1. Inf. J. Comput. 1(2), 190–206 (1989)

    Article  Google Scholar 

  36. Glover F.: Tabu search—part 2. Inf. J. Comput. 2(1), 4–32 (1990)

    Article  Google Scholar 

  37. James T., Rego C., Glover F.: A cooperative parallel tabu search algorithm for the quadratic assignment problem. Eur. J. Oper. Res. 195, 810–826 (2007)

    Article  Google Scholar 

  38. Eswaramurthy V.P., Tamilarasi A.: Hybridizing tabu search with ant colony optimization for solving job shop scheduling problems. Int. J. Adv. Manuf. Technol. 40, 9–10 (2009)

    Article  Google Scholar 

  39. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE International Conference on Computational Cybernetics and Simulation, pp. 4104–4109. Orlando, USA (1997)

  40. Al-Kazemi, B., Mohan, C.K.: Discrete multi-phase particle swarm optimization. In: Grana, M., Duro, R., d’Anjou, A., Wang, P.P. (eds.) Information Processing with Evolutionary Algorithms. Advanced Information and Knowledge Processing, pp. 305–327. Springer, Heidelberg (2005)

  41. Clerc, M.: http://clerc.maurice.free.fr/pso/

  42. Anghinolfi D., Paolucci M.: A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times. Eur. J. Oper. Res. 193(1), 73–85 (2009)

    Article  Google Scholar 

  43. Liao C.J., Tseng C.T., Luarn P.: A discrete version of particle swarm optimization flow shop scheduling problems. Comput. Oper. Res. 34(10), 3099–3111 (2007)

    Article  Google Scholar 

  44. Jin Y.X., Cheng H.Z., Yan J.Y., Zhang L.: New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr. Power Syst. Res. 77(3–4), 227–233 (2007)

    Article  Google Scholar 

  45. Pan Q.K., Tasgentiren M.F., Liang Y.C.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput. Oper. Res. 35(9), 2807–2839 (2008)

    Article  Google Scholar 

  46. Tseng C.T., Liao C.J.: A discrete particle swarm optimization for lot-streaming flow shop scheduling problem. Eur. J. Oper. Res. 191(2), 360–373 (2008)

    Article  Google Scholar 

  47. Lian Z., Gu X., Jiao B.: A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos Solitons Fractals 35(5), 851–861 (2008)

    Article  Google Scholar 

  48. Gherboudj, A., Chikhi, S.: BPSO algorithms for knapsack problem (2011). doi:10.1007/978-3-642-21937-5_20

  49. Dorigo, M.: Optimization, learning and natural algorithms (in Italian). PhD thesis, Department of Electronics and Information Polytechnic of Milan, Italy (1992)

  50. Dorigo M., Maniezzo V., Colorni A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  51. Dorigo M., Caro G.D., Gambardella L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 1–36 (1999)

    Article  Google Scholar 

  52. Saber A.Y., Senjyu T.: Memory-bounded ant colony optimization with dynamic programming and a local search for generator planning. IEEE Trans. Power Syst. 22(4), 1965–1973 (2007)

    Article  Google Scholar 

  53. Jang S.H., Roh J.H., Kim W., Sherpa T., Kim J.H., Park J.B.: A novel binary ant colony optimization: application to the unit commitment problem of power systems. J. Electr. Eng. Technol. 6(2), 174–181 (2011)

    Article  Google Scholar 

  54. Agarwal M., Sharma V.K.: Ant colony approach to constrained redundancy optimization in binary systems. Appl. Math. Model. 34(4), 992–1003 (2010)

    Article  Google Scholar 

  55. Garey M., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    Google Scholar 

  56. Gaivoronski A.A., Lisser A., Lopez R., Hu X.: Knapsack problem with probability constraints. J. Glob. Optim. 49(3), 397–413 (2011)

    Article  Google Scholar 

  57. Argyris N., Figueira J.R., Morton A.: Identifying preferred solutions to multi-objective binary optimization problems, with an application to the multi-objective knapsack problem. J. Glob. Optim. 49(2), 213–235 (2011)

    Article  Google Scholar 

  58. Mavrotas G., Figueira J.R., Antoniadis A.: Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems. J. Glob. Optim. 49(4), 589–606 (2011)

    Article  Google Scholar 

  59. Visée M., Teghem J., Ulungu E.L.: Two-phase method and branch and bound procedures to solve the bi-objective knapsack problem. J. Glob. Optim. 12, 139–155 (1998)

    Article  Google Scholar 

  60. Crowder H., Johnson E.L., Padberg H.W.: Solving large scale zero–one linear programming problems. Oper. Res. Soc. 31, 803–834 (1983)

    Article  Google Scholar 

  61. Nemhauser G.L., Savelsbergh M.W.P, Sigismondi G.C.: MINTO, a mixed INTeger optimizer. Oper. Res. Lett. 15, 47–58 (1994)

    Article  Google Scholar 

  62. Senju S., Toyoda Y.: An approach to linear programming with 0–1 variables. Manage. Sci. 15, 196–207 (1968)

    Article  Google Scholar 

  63. Balev S., Yanev N., Fréville A., Andonov R.: A dynamic programming based reduction procedure for the multidimensional 0–1 knapsack problem. Eur. J. Oper. Res. 186(1), 63–76 (2008)

    Article  Google Scholar 

  64. Shih W.: A branch and bound method for the multiconstraint zero–one knapsack problem. J. Oper. Res. Soc. 30, 369–378 (1979)

    Google Scholar 

  65. Mansini R., Speranza M.G.: A multidimensional knapsack model for the asset-backed securitization. J. Oper. Res. Soc. 53, 822–832 (2002)

    Article  Google Scholar 

  66. Gilmore P.C., Gomory R.E.: The theory and computation of knapsack functions. Oper. Res. 14, 1045–1075 (1966)

    Article  Google Scholar 

  67. Chor B., Rivest R.L.: A knapsack-type public key cryptosystem based on arithmetic infinite fields. IEEE Trans. Inf. Theory. 34, 1–22 (1988)

    Article  Google Scholar 

  68. Drexl A.: A simulated annealing approach to the multiconstraint zero–one knapsack problem. Computing 40, 1–8 (1988)

    Article  Google Scholar 

  69. Cotta C., Troya J.M.: A hybrid genetic algorithm for the 0–1 multiple knapsack problem. Artif. Neural Nets. Genet. Alg. 3, 250–254 (1998)

    Article  Google Scholar 

  70. Li H., Jiao Y.C., Zhang L., Gu Z.-W.: Genetic algorithm based on the orthogonal design for multidimensional knapsack problems. In: Jiao, L., Wang, L., Gao, X.B., Liu, J., Wu , F. (eds.) Advances in Natural Computation, pp. 696–705. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  71. Fidanova S.: Ant colony optimization for multiple knapsack problem and model bias. In: Margenov, S., Vulkov, L.G., Wasniewski, J. (eds.) Numerical Analysis and its Applications, pp. 280–287. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  72. Kong M., Tian P.: Apply the particle swarm optimization to the multidimensional knapsack problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada , J.M. (eds.) Artificial Intelligence and Computational Intelligence, pp. 1140–1149. Springer, Heidelberg (2006)

    Google Scholar 

  73. Angelelli E., Mansini R., Speranza M.G.: Kernel search: a general heuristic for the multi-dimensional knapsack problem. Comput. Oper. Res. 37(11), 2017–2026 (2010)

    Article  Google Scholar 

  74. Holliday D., Resnick R., Walker J.: Fundamentals of Physics. Wiley, New York (1993)

    Google Scholar 

  75. OR-Library, Beasley, J.E.: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Mariyam Shamsuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshti, Z., Shamsuddin, S.M. & Yuhaniz, S.S. Binary Accelerated Particle Swarm Algorithm (BAPSA) for discrete optimization problems. J Glob Optim 57, 549–573 (2013). https://doi.org/10.1007/s10898-012-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-0006-1

Keywords