Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Armijo-type method for pseudomonotone equilibrium problems and its applications

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present a new algorithm for solving equilibrium problems, where the underlying bifunctions are pseudomonotone and not necessarily Lipschitz-type continuous. The algorithm is based on the auxiliary problem principle and the Armijo-type linesearch techniques. Convergence properties of the algorithms are established, among them the global convergence is proved under few assumptions. Applications to generalized variational inequalities and some numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh P.N.: A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems. Acta Math. Vietnam. 34, 183–200 (2009)

    Google Scholar 

  2. Anh P.N.: An LQP regularization method for equilibrium problems on polyhedral. Vietnam J. Math. 36, 209–228 (2008)

    Google Scholar 

  3. Anh P.N., Kim J.K.: Outer approximation algorithms for pseudomonotone equilibrium problems. Comput. Math. Appl. 61, 2588–2595 (2011)

    Article  Google Scholar 

  4. Anh P.N., Kuno T.: A cutting hyperplane method for generalized monotone nonlipschitzian multivalued variational inequalities. In: Bock, H.G., Phu, H.X., Rannacher, R., Schloder, J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes, Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  5. Anh P.N., Muu L.D., Nguyen V.H., Strodiot J.J.: Using the Banach contraction principle to implement the proximal point method for multivalued monotone variational inequalities. J. Optim Theory Appl. 124, 285–306 (2005)

    Article  Google Scholar 

  6. Anh L.Q., Khanh P.Q.: Existence conditions in symmetric multivalued vector quasi-equilibrium problems. Control Cybern. 36, 519–530 (2007)

    Google Scholar 

  7. Antipin A.S.: The convergence of proximalmethods to fixed points of extremal mappings and estimates of their rates of convergence. Comput. Math. Math. Phys. 35, 539–551 (1995)

    Google Scholar 

  8. Blum E., Oettli W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)

    Google Scholar 

  9. Bnouhachem A.: An LQP method for psedomonotone variational inequalities. J. Global Optim. 36, 351–363 (2006)

    Article  Google Scholar 

  10. Cohen G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 59, 325–333 (1988)

    Article  Google Scholar 

  11. Dafermos S.: Exchange price equilibria and variational inequalities. Math. Progam. 46, 391–402 (1990)

    Article  Google Scholar 

  12. Daniele P., Giannessi F., Maugeri A.: Equilibrium Problems and Variational Models. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  13. Facchinei F., Pang J.S.: Finite-dimensional variational inequalities and complementary problems. Springer, NewYork (2003)

    Google Scholar 

  14. Fukushima M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  Google Scholar 

  15. Konnov I.V.: Combined relaxation methods for variational inequalities. Springer, Berlin (2000)

    Google Scholar 

  16. Mastroeni G.: On Auxiliary Principle for Equilibrium Problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Nonconvex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  17. Mastroeni G.: Gap Functions for equilibrium problems. J. Global Optim. 27, 411–426 (2003)

    Article  Google Scholar 

  18. Mathiesen L.: An algorithm based on a sequence of linear complementarity problems applied to a Walrasian equilibrium model: an example. Math. Program. 37, 1–18 (1987)

    Article  Google Scholar 

  19. Moudafi A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)

    Google Scholar 

  20. Nguyen T.T.V., Strodiot J.J., Nguyen V.H.: A bundle method for solving equilibrium problems. Math. Program. 116, 529–552 (2009)

    Article  Google Scholar 

  21. Noor M.A.: Auxiliary principle technique for equilibrium problems. J. Optim. Theory Appl. 122, 371–386 (2004)

    Article  Google Scholar 

  22. Solodov M.V., Svaiter B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  Google Scholar 

  23. Quoc T.D., Anh P.N., Muu L.D.: Dual extragradient algorithms to equilibrium problems. J. Global Optim. 52, 139–159 (2012)

    Article  Google Scholar 

  24. Wang Y.J., Xiu N.H., Zhang J.Z.: Modified extragradient method for variational inequalities and verification of solution existence. J. Optim. Theory Appl. 119, 167–183 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Le Thi.

Additional information

This research has been suported by “Fonds Européens de Développement Régional” (FEDER) Lorraine, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anh, P.N., Le Thi, H.A. An Armijo-type method for pseudomonotone equilibrium problems and its applications. J Glob Optim 57, 803–820 (2013). https://doi.org/10.1007/s10898-012-9970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9970-8

Keywords

Mathematics Subject Classification (2000)