Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assessment of a Non-Conservative Four-Equation Multiphase System with Phase Transition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work focuses on the formulation of a four-equation model for simulating unsteady two-phase mixtures with phase transition and strong discontinuities. The main assumption consists in a homogeneous temperature, pressure and velocity fields between the two phases. Specifically, we present the extension of a residual distribution scheme to solve a four-equation two-phase system with phase transition written in a non-conservative form, i.e. in terms of internal energy instead of the classical total energy approach. This non-conservative formulation allows avoiding the classical oscillations obtained by many approaches, that might appear for the pressure profile across contact discontinuities. The proposed method relies on a finite element based residual distribution scheme which is designed for an explicit second-order time stepping. We test the non-conservative residual distribution scheme on several benchmark problems and assess the results via a cross-validation with the approximated solution obtained via a conservative approach, based on a HLLC scheme. Furthermore, we check both methods for mesh convergence and show the effective robustness on very severe test cases, that involve both problems with and without phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abgrall, R.: Toward the ultimate conservative scheme: following the quest. J. Comput. Phys. 167(2), 277–315 (2001)

    Article  MathSciNet  Google Scholar 

  2. Abgrall, R.: Residual distribution schemes: current status and future trends. Comput. Fluids 35(7), 641–669 (2006)

    Article  MathSciNet  Google Scholar 

  3. Abgrall, R., Bacigaluppi, P.: Design of a second-order fully explicit residual distribution scheme for compressible multiphase flows. In: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. FVCA 2017, Springer Proceedings in Mathematics & Statistics, vol. 200. Springer, Cham (2017)

  4. Abgrall, R., Bacigaluppi, P., Tokareva, S.: A high-order nonconservative approach for hyperbolic equations in fluid dynamics. Comput. Fluids 169, 10–22 (2018). https://doi.org/10.1016/j.compfluid.2017.08.019

    Article  MathSciNet  MATH  Google Scholar 

  5. Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the time-dependent euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2019). https://doi.org/10.1016/j.camwa.2018.05.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Abgrall, R., De Santis, D., Ricchiuto, M.: High-order Preserving Residual Distribution Schemes for Advection-diffusion Scalar Problems on Arbitrary FGrids. SIAM J. Sci. Comput. 36(3), a955–a983 (2014). https://doi.org/10.1137/12090143X

    Article  MATH  Google Scholar 

  7. Bacigaluppi, P., Abgrall, R., Kaman, T.: Hybrid explicit residual distribution scheme for compressible multiphase flows. J.f Phys. Conf. Ser. 821(1) (2017)

  8. Bacigaluppi, P., Abgrall, R., Tokareva, S.: “A posteriori” limited high order and robust residual distribution schemes for transient simulations of fluid flows in gasdynamics (2019). Preprint at arXiv:1902.07773 (2019)

  9. Baer, M., Nunziato, J.: A Two-phase Mixture Theory for the Deflagration-to-detonation Transition (DDT) in Reactive Granular Materials. Int. J. Multiph. Flow 12(6), 861–889 (1986)

    Article  Google Scholar 

  10. Chiapolino, A., Boivin, P., Saurel, R.: A simple phase transition relaxation solver for liquid-vapor flows. Int. J. Numer. Meth. Fluids 83, 583–605 (2017)

    Article  MathSciNet  Google Scholar 

  11. Clain, S., Diot, S., Loubère, R.: A High-order Finite Volume Method for Systems of Conservation Laws - Multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)

    Article  MathSciNet  Google Scholar 

  12. Davis, S.: Simplified second-order godunov-type methods. SIAM J. Sci. Stat. Comput. 9(3), 445–473 (1988)

    Article  MathSciNet  Google Scholar 

  13. De Santis, D.: Development of a high-order residual distribution method for Navier–Stokes and RANS equations. Ph.D. thesis, Université Sciences et Technologies-Bordeaux I (2013)

  14. Deconinck, H., Ricchiuto, M.: Residual Distribution Schemes: Foundations and Analysis. In: Encyclopedia of Computational Mechanics. John Wiley & Sons, Ltd (2004)

  15. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012)

    Article  MathSciNet  Google Scholar 

  16. Downar-Zapolski, P., Bilicki, Z., Bolle, L., Franco, J.: The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiph. Flow 22(3), 473–483 (1996)

    Article  Google Scholar 

  17. Flåtten, T., Lund, H.: Relaxation two-phase models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21, 2379–2407 (2011)

    Article  MathSciNet  Google Scholar 

  18. Israel, D.M., Jr., R.L.S., Doebling, S.W., Kamm, J.R.: ExactPack v1.0. Los Alamos Technical Report LA-CC-14-047 (2014)

  19. Kamm, K.J.: An exact, compressible one-dimensional Riemann solver for general, convex equations of state. Los Alamos Technical Report LA-UR-15-21616 (2015)

  20. Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). https://doi.org/10.1016/j.cam.2009.05.028. URL http://www.sciencedirect.com/science/article/pii/S0377042709003318. Finite Element Methods in Engineering and Science (FEMTEC 2009)

  21. Layes, G., Le Métayer, O.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids 19(4), 042105 (2007). https://doi.org/10.1063/1.2720597

    Article  MATH  Google Scholar 

  22. Le Martelot, S., Saurel, R., Nkonga, B.: Towards the direct numerical simulation of nucleate boiling flows. Int. J. Multiph. Flow 66, 62–78 (2014)

    Article  MathSciNet  Google Scholar 

  23. LeVeque, R., Berger, M., et al.: CLAWPACK Software (2011). ftp://amath.washington.edu/pub/rjl/programs/clawpack.html

  24. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  25. Lund, H.: A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72(6), 1713–1741 (2012)

    Article  MathSciNet  Google Scholar 

  26. Lund, H., Aursand, P.: Two-phase flow of CO2 with phase transfer. Energy Procedia 23, 246–255 (2012)

    Article  Google Scholar 

  27. Pelanti, M., Shyue, K.: A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259, 331–357 (2014)

    Article  MathSciNet  Google Scholar 

  28. Ricchiuto, M., Abgrall, R.: Explicit Runge–Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010). https://doi.org/10.1016/j.jcp.2010.04.002

    Article  MathSciNet  MATH  Google Scholar 

  29. Saurel, R., Boivin, P., Métayer, O.L.: A general formulation for cavitating, boiling and evaporating flows. Comput. Fluids 128, 53–64 (2016). https://doi.org/10.1016/j.compfluid.2016.01.004. URL http://www.sciencedirect.com/science/article/pii/S0045793016000153

  30. Saurel, R., Petipas, F., Abgrall, R.: Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313–350 (2008)

    Article  MathSciNet  Google Scholar 

  31. Saurel, R., Petitpas, F., Berry, R.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228(5), 1678–1712 (2009). https://doi.org/10.1016/j.jcp.2008.11.002. URL http://www.sciencedirect.com/science/article/pii/S0021999108005895

  32. Toro, E., Spruce, M., Speares, W.: Restoration of the Contact Surface in the Harten–Lax–van Leer Riemann Solver. Springer, Berlin (1994)

    MATH  Google Scholar 

  33. Vilar, F.: A Posteriori Correction of High-Order Discontinuous Galerkin Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. Journal of Computational Physics (2018). https://doi.org/10.1016/j.jcp.2018.10.050. URL http://www.sciencedirect.com/science/article/pii/S0021999118307174

  34. Yang, M., Wang, Z.: A Parameter-Free Generalized Moment Limiter for High-Order Methods on Unstructured Grids. Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics (2009). https://doi.org/10.2514/6.2009-605

Download references

Acknowledgements

P. B. has been funded by the SNSF project grant \(\# 200021\_153604\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bacigaluppi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacigaluppi, P., Carlier, J., Pelanti, M. et al. Assessment of a Non-Conservative Four-Equation Multiphase System with Phase Transition. J Sci Comput 90, 28 (2022). https://doi.org/10.1007/s10915-021-01706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01706-6

Keywords