Abstract
Simulated consultations through virtual patients allow medical students to practice history-taking skills. Ideally, applications should provide interactions in natural language and be multi-case, multi-specialty. Nevertheless, few systems handle or are tested on a large variety of cases. We present a virtual patient dialogue system in which a medical trainer types new cases and these are processed without human intervention. To develop it, we designed a patient record model, a knowledge model for the history-taking task, and a termino-ontological model for term variation and out-of-vocabulary words. We evaluated whether this system provided quality dialogue across medical specialities (n = 18), and with unseen cases (n = 29) compared to the cases used for development (n = 6). Medical evaluators (students, residents, practitioners, and researchers) conducted simulated history-taking with the system and assessed its performance through Likert-scale questionnaires. We analysed interaction logs and evaluated system correctness. The mean user evaluation score for the 29 unseen cases was 4.06 out of 5 (very good). The evaluation of correctness determined that, on average, 74.3% (sd = 9.5) of replies were correct, 14.9% (sd = 6.3) incorrect, and in 10.7% the system behaved cautiously by deferring a reply. In the user evaluation, all aspects scored higher in the 29 unseen cases than in the 6 seen cases. Although such a multi-case system has its limits, the evaluation showed that creating it is feasible; that it performs adequately; and that it is judged usable. We discuss some lessons learned and pivotal design choices affecting its performance and the end-users, who are primarily medical students.
Similar content being viewed by others
Data availability
The dialogue data collected during development and evaluation is available at: https://pvdial.limsi.fr/data/PG-logs-eval.zip A demonstration of the dialogue system can be tested at: http://vps-9069f76a.vps.ovh.net
Code availability
Not applicable.
Notes
We refer with this term to virtual standardised patients.
References
Washburn M., Bordnick P., Rizzo A. S.: A pilot feasibility study of virtual patient simulation to enhance social work students’ brief mental health assessment skills. Soc. Work Health Care 55 (9): 675–693, 2016
Barnett S. G., Gallimore C. E., Pitterle M., Morrill J.: Impact of a paper vs virtual simulated patient case on student-perceived confidence and engagement. Am. J. Pharm. Educ. 80 (1): 16, 2016
McCoy L., Pettit R. K., Lewis J. H., Allgood J. A., Bay C., Schwartz F. N.: Evaluating medical student engagement during virtual patient simulations: A sequential, mixed methods study. BMC Med. Educ. 16: 20, 2016
Tait L., Lee K., Rasiah R., Cooper J. M., Ling T., Geelan B., Bindoff I. (2018) Simulation and feedback in health education: A mixed methods study comparing three simulation modalities. Pharmacy (Basel) 6(2):41–57
Courteille O., Fahlstedt M., Ho J., Hedman L., Fors U., von Holst H., Fellander-Tsai L., Moller H.: Learning through a virtual patient vs. recorded lecture: A comparison of knowledge retention in a trauma case. Int. J. Med. Educ. 9: 86–92, 2018
Gupta A., Singh S., Khaliq F., Dhaliwal U., Madhu S. V.: Development and validation of simulated virtual patients to impart early clinical exposure in endocrine physiology. Adv. Physiol. Educ. 42 (1): 15–20, 2018
de Cock C., Milne-Ives M., van Velthoven M. H., Alturkistani A., Lam C., Meinert E.: Effectiveness of conversational agents (virtual assistants) in health care: Protocol for a systematic review. JMIR Res. Protoc. 9 (3): e16934, 2020
Ellaway R., Candler C., Greene P., Smothers V. An architectural model for MedBiquitous virtual patients. 2006 http://groups.medbiq.org/medbiq/display/VPWG/MedBiquitous+Virtual+Patient+Architecture, Accessed: 1 Apr 2021
Sijstermans R., Jaspers M. W., Bloemendaal P., Schoonderwaldt E.: Training inter-physician communication using the dynamic patient simulator®; Int. J. Med. Inf. 76 (5–6): 336–343, 2007
Danforth D. R., Procter M., Chen R., Johnson M., Heller R.: Development of virtual patient simulations for medical education. J. Virtual Worlds Res. 2 (2): 4–11, 2009
Rombauts N. (2014) Patients virtuels: pédagogie, état de l’art et développement du simulateur Alphadiag. PhD dissertation, Faculty of Medicine, Claude Bernard University, Lyon France
Menendez E., Balisa-Rocha B., Jabbur-Lopes M., Costa W., Nascimento J. R., Dósea M., Silva L., Junior D. L.: Using a virtual patient system for the teaching of pharmaceutical care. Int. J. Med. Inf. 84 (9): 640–646, 2015
Lin C. J., Pao C. W., Chen Y. H., Liu C. T., Hsu H. H.: Ellipsis and coreference resolution in a computerized virtual patient dialogue system. J. Med. Syst. 40 (9): 206–221, 2016
Laleye F. A., Blanié A., Brouquet A., Behnamou D., de Chalendar G.: Semantic similarity to improve question understanding in a virtual patient.. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020, pp 859–866
Chen F., Lee Y., Hubal R.: Work-in-progress—testing of a virtual patient: Linguistic and display engagement findings.. In: 2020 6th International Conference of the Immersive Learning Research Network (iLRN). IEEE, 2020, pp 348–350
Candler C.: Effective use of educational technology in medical education.. In: Colloquium on Educational Technology: Recommendations and Guidelines for Medical Educators. AAMC Institute for Improving Medical Education, Washington, DC, 2007, pp 1–19
Schmidlen T., Schwartz M., DiLoreto K., Kirchner H. L., Sturm A. C.: Patient assessment of chatbots for the scalable delivery of genetic counseling. J. Genet. Couns. 28 (6): 1166–1177, 2019
Chetlen A., Artrip R., Drury B., Arbaiza A., Moore M.: Novel use of chatbot technology to educate patients before breast biopsy. J. Am. Coll. Radiol. 16 (9 Pt B): 1305–1308, 2019
Kokciyan N., Chapman M., Balatsoukas P., Sassoon I., Essers K., Ashworth M., Curcin V., Modgil S., Parsons S., Sklar E. I.: A collaborative decision support tool for managing chronic conditions. Stud. Health Technol. Inform. 264: 644–648, 2019
Cook D. A., Erwin P. J., Triola M. M.: Computerized virtual patients in health professions education: A systematic review and meta-analysis. Acad. Med. 85 (10): 1589–1602, 2010. https://doi.org/10.1097/ACM.0b013e3181edfe13
Wattanasoontorn V., Hernández R. J. G., Sbert M.: Embodied conversational virtual patients. In: (Diana P. M., Nieto I. P., Eds.) Conversational Agents and Natural Language Interaction: Techniques and Effective Practices. Information Science Reference, IGI Global, Hershey, 2011, pp 254–281. https://doi.org/10.4018/978-1-60960-617-6.ch011
Rossen B., Lok B.: A crowdsourcing method to develop virtual human conversational agents. Int. J. Hum. Comput. Stud. 70 (4): 301–319, 2012
Lelardeux C., Panzoli D., Alvarez J., Galaup M., Lagarrigue P.: Serious game, simulateur, serious play: État de l’art pour la formation en santé.. In: Actes du colloque Serious Games en Médecine et Santé (SeGaMED) 2013. e-virtuoses, Nice, 2013, pp 27–38
Wattanasoontorn V., Hernández R.J.G., Sbert M.: Serious games for e-health care. In: (Cai Y., Goei S., Eds.) Simulations, Serious Games and Their Applications. Springer, Singapore, 2014, pp 127–146. https://doi.org/10.1007/978-981-4560-32-0_9
Reiswich A., Haag M.: Evaluation of chatbot prototypes for taking the virtual patient’s history. Stud. Health Technol. Inform. 260: 73–80, 2019
Nirenburg S., Beale S., McShane M., Jarrell B., Fantry G.: Language understanding in Maryland virtual patient.. In: Proceedings of the International Conference on on Computational Linguistics. Citeseer, Manchester, 2008, pp 36–39
Campillos-Llanos L., Bouamor D., Bilinski É., Ligozat A. L., Zweigenbaum P., Rosset S.: Description of the PatientGenesys dialogue system.. In: Proceedings of SIGDIAL. Association for Computational Linguistics, Prague, 2015, pp 438–440
Leuski A., Traum D.: Practical language processing for virtual humans.. In: Proceedings on Innovative Applications of Artificial Intelligence Conference, Atlanta, 2010, pp 1740–1747
Rizk Y., Kshoury K., Chehab M., Chidiac P., Awad M., Antoun J.: Virtual patient.. In: Proceedings of WINLP, Vancouver, 2017, pp 1–3
Datta D., Brashers V., Owen J., White C., Barnes L. E.: A deep learning methodology for semantic utterance classification in virtual human dialogue systems. In: (Traum D., Swartout W., Khooshabeh P., Kopp S., Scherer S., Leuski A., Eds.) Intelligent Virtual Agents, Los Angeles. Springer, Berlin, 2016, pp 451–455
Jin L., White M., Jaffe E., Zimmerman L., Danforth D.: Combining cnns and pattern matching for question interpretation in a virtual patient dialogue system.. In: Proceedings on Workshop Innovative Use NLP Building Educational Applications. Copenhagen, 2017, pp 11–21
Dickerson R., Johnsen K., Raij A., Lok B., Hernandez J., Stevens A., Lind D. S.: Evaluating a script-based approach for simulating patient-doctor interaction.. In: Proceedings of the International, Conference on Human-Computer Interface Advances Modeling and Simulation, New Orleans, 2005, pp 79–84
Pence T. B., Dukes L. C., Hodges L. F., Meehan N. K., Johnson A.: The effects of interaction and visual fidelity on learning outcomes for a virtual pediatric patient system.. In: IEEE International Conference on Healthcare Informatics (ICHI). IEEE, Philadelphia, 2013, pp 209–218. https://doi.org/10.1109/ICHI.2013.36
Maicher K., Danforth D., Price A., Zimmerman L., Wilcox B., Liston B., Cronau H., Belknap L., Ledford C., Way D., et al.: Developing a conversational virtual standardized patient to enable students to practice history-taking skills. Simul. Healthc. 12 (2): 124–131, 2017. https://doi.org/10.1097/SIH.0000000000000195
Talbot T. B., Sagae K., John B., Rizzo A. A.: Sorting out the virtual patient: How to exploit artificial intelligence, game technology and sound educational practices to create engaging role-playing simulations. Int. J. Gaming Comput. Mediat. Simul. 4 (3): 1–19, 2012. https://doi.org/10.4018/jgcms.2012070101
Scherly D., Nendaz M.: Simulation du raisonnement clinique sur ordinateur: Le patient virtuel. In: (Boet S., Granry J., Savoldelli G., Eds.) La Simulation en Santé. De la Théorie à la Pratique. Springer, Paris, 2013, pp 43–50. https://doi.org/10.1007/978-2-8178-0469-9_5
Hubal R. C., Kizakevich P. N., Guinn C. I., Merino K. D., West S. L.: The virtual standardized patient. Stud. Health Technol. Inform. 70: 133–138, 2000
Stevens A., Hernandez J., Johnsen K., Dickerson R., Raij A., Harrison C., DiPietro M., Allen B., Ferdig R., Foti S., et al.: The use of virtual patients to teach medical students history taking and communication skills. Am. J. Surg. 191 (6): 806–811, 2006
Kenny P., Rizzo A. A., Parsons T. D., Gratch J., Swartout W.: A virtual human agent for training novice therapists clinical interviewing skills. Annu. Rev. CyberTherapy Telemed. 5: 77–83, 2007. https://doi.org/10.1145/159544.159587
Kenny P., Parsons T. D., Gratch J., Rizzo A. A.: Evaluation of Justina: A virtual patient with PTSD. In: (Prendinger H., Lester J., Ishizuka M., Eds.) Intelligent Virtual Agents. Springer, Berlin, 2008, pp 394–408
Parsons T. D.: Virtual standardized patients for assessing the competencies of psychologists.. In: Encyclopedia of Information Science and Technology, 3rd edn. IGI Global, 2015, pp 6484–6492. https://doi.org/10.4018/978-1-4666-5888-2.ch637
Persad A., Stroulia E., Forgie S.: A novel approach to virtual patient simulation using natural language processing. Med. Educ. 50 (11): 1162–1163, 2016. https://doi.org/10.1111/medu.13197
Gokcen A., Jaffe E., Erdmann J., White M., Danforth D.: A corpus of word-aligned asked and anticipated questions in a virtual patient dialogue system.. In: LREC International Conference on Language Resources and Evaluation, Portorož, 2016, pp 3174–3179
Talbot T. B., Kalisch N., Christoffersen K., Lucas G., Forbell E.: Natural language understanding performance and use considerations in virtual medical encounters. Stud Health Technol. Inform. 220: 407–413, 2016
Leleu J., Caillat-Grenier R., Pierard N., Rica P., Granry J. C., Lehousse T., Pereira S., Bretier P., Rosec O., Bilinski É., Bouamor D., Campillos-Llanos L., Grau B., Ligozat A. L., Zweigenbaum P., Rosset S.: Patient Genesys: Outil de création de cas cliniques de simulation médicale proposant des cas patients virtuels en 3D.. In: Applications Pratiques de l’Intelligence Artificielle, Rennes, 2015, p 2
Campillos-Llanos L., Bouamor D., Zweigenbaum P., Rosset S.: Managing linguistic and terminological variation in a medical dialogue system.. In: LREC International Conference on Language Resources and Evaluation, Portorož, 2016, pp 3167–3173
Campillos-Llanos L., Thomas C., Bilinski É., Zweigenbaum P., Rosset S.: Designing a virtual patient dialogue system based on terminology-rich resources: Challenges and evaluation. Nat. Lang. Eng. 26 (2): 183–220, 2020
Bodenreider O.: The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32 (suppl 1): D267–D270, 2004
Dybkjær L., Bernsen N.O.: Usability evaluation in spoken language dialogue systems.. In: Proceedings of Workshop on Evaluation for Language and Dialogue Systems. Association for Computational Linguistics, 2001, pp 9–18
Duplessis G. D., Letard V., Ligozat A. L., Rosset S.: Purely corpus-based automatic conversation authoring.. In: LREC International Conference on Language Resources and Evaluation, Portorož, 2016, pp 2728–2735
Campillos-Llanos L., Rosset S., Zweigenbaum P.: Automatic classification of doctor-patient questions for a virtual patient record query task.. In: Proceedings of BioNLP. Association for Computational Linguistics, Vancouver, 2017, pp 333–341
Acknowledgements
We greatly thank all doctors who evaluated the system and gave valuable remarks, and also Dr. Aurélie Névéol for her helpful comments on the manuscript. We also thank the anonymous reviewers for their constructive suggestions. We developed the dialogue system in a collaborative project led by Interaction Healthcare and having as partners VIDAL, Angers University Hospital, Voxygen and LIMSI.Footnote 4
Funding
This work was funded by BPI (FUI Project PatientGenesys, F1310002-P) and by the Société d’Accélération de Transfert Technologique (SATT) Paris Saclay (PVDial project). The funding bodies did not take part in the design of the study, analysis and interpretation of data and writing the manuscript.
Author information
Authors and Affiliations
Contributions
Sophie Rosset (SR), Leonardo Campillos-Llanos (LC) and Catherine Thomas (CT) developed the VP dialogue system, and Pierre Zweigenbaum (PZ) contributed to the medical terminology components and patient record model. Éric Bilinski (EB) implemented the web evaluation tool and the online demonstration of the dialogue system. Antoine Neuraz (AN) helped to engage the evaluation participants and made valuable remarks about the system and article. SR and PZ designed the evaluation protocol, and LC collected and analysed the evaluation data. LC and SR double-checked a subset of the data. LC, SR and PZ wrote the manuscript, and all authors read and approved the final article.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Education & Training
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Campillos-Llanos, L., Thomas, C., Bilinski, É. et al. Lessons Learned from the Usability Evaluation of a Simulated Patient Dialogue System. J Med Syst 45, 69 (2021). https://doi.org/10.1007/s10916-021-01737-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-021-01737-4