Abstract
Inductive \(k\)-independent graphs generalize chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced c-colorable subgraphs, which is a generalization of finding maximum independent sets, naturally occurs when selecting \(c\) sets of pairwise non-conflicting jobs (modeled as graph vertices). We investigate the parameterized complexity of this problem on inductive \(k\)-independent graphs. We show that the Maximum Independent Set problem is W[1]-hard even on 2-simplicial 3-minoes—a subclass of inductive 2-independent graphs. In contrast, we prove that the more general Max-Weightc-Colorable Subgraph problem is fixed-parameter tractable on edge-wise unions of cluster and chordal graphs, which are 2-simplicial. In both cases, the parameter is the solution size. Aside from this, we survey other graph classes between inductive \(1\)-independent and inductive \(2\)-independent graphs with applications in scheduling.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Ásgeirsson et al. (2017) interested in maximum-weight unions of c independent sets. In the graph theory literature, the problem is known as Max-Weight\(c\)-Colorable Subgraph; we prefer to stick to the established graph theory notion.
We are not aware that \(A\bowtie B\) or an alike notation has been used before. Rather, previous work has been coming up with ad hoc names for the classes \(A\bowtie B\) for various \(A\) and \(B\), often referring to one and the same class by several names.
References
Akcoglu, K., Aspnes, J., DasGupta, B., & Kao, M. Y. (2002). Opportunity-cost algorithms for combinatorial auctions. In Applied optimization 74: Computational methods in decision-making, economics and finance (pp. 455–479). Dordrecht: Kluwer. https://doi.org/10.1007/978-1-4757-3613-7_23
Alon, N., Yuster, R., & Zwick, U. (1995). Color-coding. Journal of the ACM, 42(4), 844–856. https://doi.org/10.1145/210332.210337.
Arkin, E. M., & Silverberg, E. B. (1987). Scheduling jobs with fixed start and end times. Discrete Applied Mathematics, 18(1), 1–8. https://doi.org/10.1016/0166-218X(87)90037-0.
Ásgeirsson, E. I., Halldórsson, M. M., & Tonoyan, T. (2017). Universal framework for wireless scheduling problems. In 44th international colloquium on automata, languages, and programming, ICALP, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (pp 129:1–129:15). https://doi.org/10.4230/LIPIcs.ICALP.2017.129.
Baker, B. S., & Coffman, E. G. (1996). Mutual exclusion scheduling. Theoretical Computer Science, 162(2), 225–243. https://doi.org/10.1016/0304-3975(96)00031-X.
Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56(1), 89–113. https://doi.org/10.1023/B:MACH.0000033116.57574.95.
van Bevern, R., Komusiewicz, C., & Sorge, M. (2017). A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experiments. Networks, 70(3), 262–278. https://doi.org/10.1002/net.21742 (WARP 2 special issue).
van Bevern, R., Mnich, M., Niedermeier, R., & Weller, M. (2015). Interval scheduling and colorful independent sets. Journal of Scheduling, 18, 449–469. https://doi.org/10.1007/s10951-014-0398-5.
Birand, B., Chudnovsky, M., Ries, B., Seymour, P., Zussman, G., & Zwols, Y. (2012). Analyzing the performance of greedy maximal scheduling via local pooling and graph theory. IEEE/ACM Transactions on Networks, 20(1), 163–176. https://doi.org/10.1109/TNET.2011.2157831.
Blair, J. R. S., & Peyton, B. (1993). An introduction to chordal graphs and clique trees. In Graph theory and sparse matrix computation, IMA volumes in mathematics and its applications (vol. 56, pp 1–29). Berlin: Springer. https://doi.org/10.1007/978-1-4613-8369-7_1.
Booth, K. S., & Lueker, G. S. (1976). Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3), 335–379. https://doi.org/10.1016/S0022-0000(76)80045-1.
Corneil, D. G., Olariu, S., & Stewart, L. (2009). The LBFS structure and recognition of interval graphs. SIAM Journal on Discrete Mathematics, 23(4), 1905–1953.
Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., et al. (2015). Parameterized algorithms. Berlin: Springer. https://doi.org/10.1007/978-3-319-21275-3.
Dirac, G. A. (1961). On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 25(1), 71–76. https://doi.org/10.1007/BF02992776.
Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Berlin: Springer. https://doi.org/10.1007/978-1-4471-5559-1.
Faenza, Y., Oriolo, G., & Stauffer, G. (2011). An algorithmic decomposition of claw-free graphs leading to an \(O(n^3)\)-algorithm for the weighted stable set problem. In Proceedings of the 22nd ACM–SIAM symposium on discrete algorithms (SODA’11) (pp. 630–646). Philadelphia: SIAM. https://doi.org/10.1137/1.9781611973082.49.
Fellows, M. R., Hermelin, D., Rosamond, F., & Vialette, S. (2009). On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science, 410(1), 53–61. https://doi.org/10.1016/j.tcs.2008.09.065.
Fellows, M. R., Jansen, B. M. P., & Rosamond, F. A. (2013). Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European Journal of Combinatorics, 34(3), 541–566. https://doi.org/10.1016/j.ejc.2012.04.008.
Flum, J., & Grohe, M. (2006). Parameterized complexity theory. Berlin: Springer. https://doi.org/10.1007/3-540-29953-X.
Frank, A. (1975). Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings of the 5th British combinatorial conference, congressus numerantium (vol. XV, pp. 211–226).
Gardi, F. (2009). Mutual exclusion scheduling with interval graphs or related classes, Part I. Discrete Applied Mathematics, 157(1), 19–35. https://doi.org/10.1016/j.dam.2008.04.016.
Gaur, D. R., & Krishnamurti, R. (2003). Scheduling intervals using independent sets in claw-free graphs. In Proceedings of the international conference on computational science and its applications (ICCSA 2003) (pp. 254–262). Berlin: Springer. https://doi.org/10.1007/3-540-44839-X_28.
Gyárfás, A., & West, D. (1995). Multitrack interval graphs. Congressus Numerantium, 109, 109–116.
Halldórsson, M. M. (2016). Invited paper: Models for wireless algorithms. In Proceedings of the 14th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt’16) (pp. 377–381). New York: IEEE. https://doi.org/10.1109/WIOPT.2016.7492945.
Halldórsson, M. M., & Karlsson, R. K. (2006). Strip graphs: Recognition and scheduling. In Proceedings of the 32nd international workshop on graph-theoretic concepts in computer science (WG’06), Lecture notes in computer science (vol. 4271, pp. 137–146). Berlin: Springer. https://doi.org/10.1007/11917496_13.
Halldórsson, M. M., & Tonoyan, T. (2015). How well can graphs represent wireless interference? In Proceedings of the 47th annual ACM symposium on theory of computing (STOC’15) (pp. 635–644). New York: ACM. https://doi.org/10.1145/2746539.2746585.
Höhn, W., König, F. G., Möhring, R. H., & Lübbecke, M. E. (2011). Integrated sequencing and scheduling in coil coating. Management Science, 57(4), 647–666. https://doi.org/10.1287/mnsc.1100.1302.
Jamison, R. E., & Mulder, H. M. (2000). Tolerance intersection graphs on binary trees with constant tolerance 3. Discrete Mathematics, 215(1), 115–131. https://doi.org/10.1016/S0012-365X(99)00231-9.
Jiang, M. (2010). On the parameterized complexity of some optimization problems related to multiple-interval graphs. Theoretical Computer Science, 411(49), 4253–4262. https://doi.org/10.1016/j.tcs.2010.09.001.
Jiang, M. (2013). Recognizing \(d\)-interval graphs and d-track interval graphs. Algorithmica, 66(3), 541–563. https://doi.org/10.1007/s00453-012-9651-5.
Kammer, F., Tholey, T., & Voepel, H. (2010). Approximation algorithms for intersection graphs. In Proceedings of the 13th international workshop on approximation algorithms for combinatorial optimization problems and 14th workshop on randomized techniques in computation: Algorithms and techniques (APPROX’10 and RANDOM’10), Lecture notes in computer science (vol. 6302, pp. 260–273). Berlin: Springer. https://doi.org/10.1007/978-3-642-15369-3_20.
Kolen, A. W. J., Lenstra, J. K., Papadimitriou, C. H., & Spieksma, F. C. R. (2007). Interval scheduling: A survey. Naval Research Logistics, 54(5), 530–543. https://doi.org/10.1002/nav.20231.
Komusiewicz, C., & Niedermeier, R. (2012). New races in parameterized algorithmics. In Proceedings of the 37th international symposium on mathematical foundations of computer science (MFCS’12), Lecture notes in computer science (vol. 7464, pp. 19–30). Berlin: Springer. https://doi.org/10.1007/978-3-642-32589-2_2.
Köse, A., Evirgen, N., Gökcesu, H., Gökcesu, K., & Médard, M. (2017). Nearly optimal scheduling of wireless ad hoc networks in polynomial time. Available on arXiv:1712.00658.
Köse, A., & Médard, M. (2017). Scheduling wireless ad hoc networks in polynomial time using claw-free conflict graphs. In Proceedings of the 28th IEEE annual international symposium on personal, indoor, and mobile radio communications (PIMRC’17) (pp. 1–7). New York: IEEE. https://doi.org/10.1109/PIMRC.2017.8292404.
Metelsky, Y., & Tyshkevich, R. (2003). Line graphs of Helly hypergraphs. SIAM Journal on Discrete Mathematics, 16(3), 438–448. https://doi.org/10.1137/S089548019936521X.
Misra, N., Panolan, F., Rai, A., Raman, V., & Saurabh, S. (2013). Parameterized algorithms for max colorable induced subgraph problem on perfect graphs. In Proceedings of the 39th international workshop on graph-theoretic concepts in computer science (WG’13) (pp. 370–381). Berlin: Springer. https://doi.org/10.1007/978-3-642-45043-3_32.
Mnich, M., & van Bevern, R. (2018). Parameterized complexity of machine scheduling: 15 open problems. Computers and Operations Research, 100, 254–261. https://doi.org/10.1016/j.cor.2018.07.020.
Nakajima, K., & Hakimi, S. L. (1982). Complexity results for scheduling tasks with discrete starting times. Journal of Algorithms, 3(4), 344–361. https://doi.org/10.1016/0196-6774(82)90030-X.
Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198566076.001.0001.
Niedermeier, R. (2010). Reflections on multivariate algorithmics and problem parameterization. In Proceedings of the 27th international symposium on theoretical aspects of computer science (STACS’10), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, LIPIcs (vol. 5, pp. 17–32). https://doi.org/10.4230/LIPIcs.STACS.2010.2495.
Papadimitriou, C., & Yannakakis, M. (1979). Scheduling interval-ordered tasks. SIAM Journal on Computing, 8(3), 405–409. https://doi.org/10.1137/0208031.
Rose, D. J., Tarjan, R. E., & Lueker, G. S. (1976). Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2), 266–283. https://doi.org/10.1137/0205021.
Shamir, R., Sharan, R., & Tsur, D. (2004). Cluster graph modification problems. Discrete Applied Mathematics, 144(1–2), 173–182. https://doi.org/10.1016/j.dam.2004.01.007.
Sung, S. C., & Vlach, M. (2005). Maximizing weighted number of just-in-time jobs on unrelated parallel machines. Journal of Scheduling, 8(5), 453–460. https://doi.org/10.1007/s10951-005-2863-7.
Wegner, G. (1961). Eigenschaften der Nerven homologisch-einfacher Familien im \(R^n\). Ph.D. Thesis, Universität Göttingen.
West, D. B., & Shmoys, D. B. (1984). Recognizing graphs with fixed interval number is NP-complete. Discrete Applied Mathematics, 8(3), 295–305. https://doi.org/10.1016/0166-218X(84)90127-6.
Yannakakis, M., & Gavril, F. (1987). The maximum \(k\)-colorable subgraph problem for chordal graphs. Information Processing Letters, 24(2), 133–137. https://doi.org/10.1016/0020-0190(87)90107-4.
Ye, Y., & Borodin, A. (2012). Elimination graphs. ACM Transactions on Algorithms, 8(2), 14:1–14:23. https://doi.org/10.1145/2151171.2151177.
Acknowledgements
We are grateful to Andreas Krebs (Tübingen) for fruitful discussions concerning parts of this work. We thank the anonymous referees of Journal of Scheduling for constructive feedback.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
René van Bevern was supported by Grant 16-31-60007 mol_a_dk of the Russian Foundation for Basic Research. This work was initiated during a research visit of René van Bevern to TU Berlin in June 2017, partly supported by TU Berlin and by the Ministry of Science and Education of the Russian Federation under the 5-100 Excellence Programme.
Rights and permissions
About this article
Cite this article
Bentert, M., van Bevern, R. & Niedermeier, R. Inductive \(k\)-independent graphs and c-colorable subgraphs in scheduling: a review. J Sched 22, 3–20 (2019). https://doi.org/10.1007/s10951-018-0595-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10951-018-0595-8