Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Image Space Analysis and Scalarization for ε-Optimization of Multifunctions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Vector constrained problems for multifunctions are considered. Under an assumption based on generalized sections of the feasible set, some results in ε-optimization are achieved. In particular, necessary and sufficient conditions for scalarization of ε-optimization for multifunctions are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, vol. 2, pp. 423–439. North-Holland, Amsterdam (1979)

    Google Scholar 

  2. Giannessi, F.: Theorems of the alternative quadratic programs and complementarity. In: Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, Chichester (1980)

    Google Scholar 

  3. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity condition for constrained extreme problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. In: Giannessi, F. (ed.) Image Space Analysis and Separation. Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer, Dordrecht (1999)

    Google Scholar 

  6. Chinaie, M., Zafarani, J.: Image space analysis and scalarization of set-valued optimization. J. Optim. Theory Appl. 142, 451–467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005)

    MATH  Google Scholar 

  8. Giannessi, F., Pellegrini, L.: Image space analysis for vector optimization and variational inequalities. In: Scalarization. Combinatorial and Global Optimization. Ser. Appl. Math., vol. 14, pp. 97–110. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  9. Kutateladze, S.S.: Convex ε-programming. Sov. Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  10. Loridan, P.: ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nemeth, A.B.: A nonconvex vector minimization problem. Nonlinear Anal. 10, 669–678 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushimi, M., Tone, K. (eds.) Proceedings of APORS, pp. 494–504. World Scientific, Singapore (1995)

    Google Scholar 

  14. Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutiérrez, C., Jiménez, B., Novo, V.: A property of efficient and ε-efficient solutions in vector optimization. J. Appl. Math. Lett. 18, 409–414 (2005)

    Article  MATH  Google Scholar 

  16. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Benoist, J., Borwein, J.M., Popovici, N.A.: Characterization of quasiconvex vector-valued functions. Proc. Am. Math. Soc. 131, 1109–1113 (2001)

    Article  MathSciNet  Google Scholar 

  18. Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57, 427–435 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Hu, R., Fang, Y.P.: Set-valued increasing-along-rays maps and well-posed set-valued star-shaped optimization. J. Math. Anal. Appl. 331, 1371–1383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G.Y., Huang, X.X.: Ekeland’s ε-variational principle for set-valued mappings. Math. Methods Oper. Res. 48, 181–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jabarootian, T., Zafarani, J.: Characterizations and application of preinvex and prequasiinvex set-valued maps. Taiwan. J. Math. 13, 871–898 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Li, T., Xu, Y., Zhu, C.: ε-strictly efficient solutions of vector optimization problems with set-valued maps. Asia-Pac. J. Oper. Res. 24, 841–854 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zafarani.

Additional information

Communicated by F. Giannessi.

The authors express their sincere gratitude to Professor F. Giannessi and the referees for comments and valuable suggestions. The second author was partially supported by the Center of Excellence for Mathematics, University of Isfahan, Isfahan, Iran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinaie, M., Zafarani, J. Image Space Analysis and Scalarization for ε-Optimization of Multifunctions. J Optim Theory Appl 157, 685–695 (2013). https://doi.org/10.1007/s10957-010-9657-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9657-6

Keywords