Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Posynomial Parametric Geometric Programming with Interval Valued Coefficient

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The article presents solution procedure of geometric programming with imprecise coefficients. We have considered problems with imprecise data as a form of an interval in nature. Many authors have solved the imprecise problem by geometric programming technique in a different way. In this paper, we introduce parametric functional form of an interval number and then solve the problem by geometric programming technique. The advantage of the present approach is that we get optimal solution of the objective function directly without solving equivalent transformed problems. Numerical examples are presented to support of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffin, R.J., Peterson, E.L., Zener, C.: Geometric Programming—Theory and Applications. Wiley, New York (1967)

    Google Scholar 

  2. Govil, K.K.: Geometric programming method for optimal reliability allocation for a series system subject to cost constraint. Microelectron. Reliab. 23(5), 783–784 (1983)

    Article  Google Scholar 

  3. Govil, K.K.: Optimal maintainability allocation using the geometric programming method. Microelectron. Reliab. 32(1/2), 265–266 (1992)

    Article  Google Scholar 

  4. Mahapatra, G.S., Roy, T.K.: Optimal fuzzy reliability for a series system with cost constraints using fuzzy geometric programming. Tamsui Oxf. J. Manag. Sci. 22(2), 51–61 (2006)

    Google Scholar 

  5. Mahapatra, B.S., Mahapatra, G.S.: Reliability and cost analysis of series system models using fuzzy parametric geometric programming. Fuzzy Inf. Eng. 2(4), 399–411 (2010)

    Article  Google Scholar 

  6. Choi, J.C., Bricker, D.L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10, 957–961 (1996)

    Article  Google Scholar 

  7. Prasad, A.V.S.R.K., Rao, P.N., Rao, U.R.K.: Optimal selection of process parameters for turning operations in a CAPP system. Int. J. Prod. Res. 35, 1495–1522 (1997)

    Article  MATH  Google Scholar 

  8. Chu, C., Wong, D.F.: VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105, 37–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hershenson, M.D., Boyd, S.P., Lee, T.H.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20, 1–21 (2001)

    Article  Google Scholar 

  10. Mandal, P.P., Visvanathan, V.: FCMOS op-amp sizing using a geometric programming formulation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20, 22–38 (2001)

    Article  Google Scholar 

  11. Cheng, T.C.E.: An economic order quantity model with demand-dependent unit production cost and imperfect production process. IIE Trans. 23, 23–28 (1991)

    Article  Google Scholar 

  12. Kim, D., Lee, W.J.: Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109, 212–227 (1998)

    Article  MATH  Google Scholar 

  13. Lee, W.J.: Determining order quantity and selling price by geometric programming: Optimal solution, bounds, and sensitivity. Decis. Sci. 24, 76–87 (1993)

    Article  Google Scholar 

  14. Jung, H., Klein, C.M.: Optimal inventory policies for an economic order quantity model with decreasing cost functions. Eur. J. Oper. Res. 165, 108–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abuo-El-Ata, M.O., Fergany, H.A., El-Wakeel, M.F.: Probabilistic multi-item inventory model with varying order cost under two restrictions: A geometric programming approach. Int. J. Prod. Econ. 83, 223–231 (2003)

    Article  Google Scholar 

  16. Worrall, B.M., Hall, M.A.: The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20, 657–667 (1982)

    Article  Google Scholar 

  17. Liu, S.T.: Using geometric programming to profit maximization with interval coefficients and quantity discount. Appl. Math. Comput. 209, 259–265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Scott, C.H., Jefferson, T.R.: Allocation of resources in project management. Int. J. Syst. Sci. 26, 413–420 (1995)

    Article  MATH  Google Scholar 

  19. Avriel, M., Dembo, R., Passy, U.: Solution of generalized geometric programs. Int. J. Numer. Methods Eng. 9, 149–168 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beightler, C.S., Philips, D.T.: Applied Geometric Programming. Wiley, New York (1976)

    MATH  Google Scholar 

  21. Duffin, R.J., Peterson, E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11, 3–35 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fang, S.C., Peterson, E.L., Rajasekera, J.R.: Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35, 111–117 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kyparisis, J.: Sensitivity analysis in geometric programming: Theory and computations. Ann. Oper. Res. 27, 39–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kortanek, K.O., No, H.: A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23, 303–322 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kortanek, K.O., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76, 155–181 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–369 (1997)

    Article  MathSciNet  Google Scholar 

  27. Peterson, E.L.: The fundamental relations between geometric programming duality, parametric programming duality, and ordinary Lagrangian duality. Ann. Oper. Res. 105, 109–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rajgopal, J.: An alternative approach to the refined duality theory of geometric programming. J. Math. Anal. Appl. 167, 266–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rajgopal, J., Bricker, D.L.: Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66, 455–475 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rajgopal, J., Bricker, D.L.: Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21, 95–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, H.H., Bricker, D.L.: Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103, 230–241 (1997)

    Article  MATH  Google Scholar 

  32. Zhu, J., Kortanek, K.O., Huang, S.: Controlled dual perturbations for central path trajectories in geometric programming. Eur. J. Oper. Res. 73, 524–531 (1992)

    Article  Google Scholar 

  33. Cao, B.Y.: Solution and theory of question for a kind of fuzzy positive geometric program. In: Proc. 2nd IFSA Congress, Tokyo, vol. 1, pp. 205–208 (1987)

    Google Scholar 

  34. Cao, B.Y.: Fuzzy Geometric Programming. Applied Optimization, vol. 76. Springer, Berlin (2002)

    MATH  Google Scholar 

  35. Yang, H., Cao, B.Y.: Fuzzy geometric programming and its application. Fuzzy Inf. Eng. 2(1), 101–112 (2010)

    Article  Google Scholar 

  36. Wu, H.C.: Duality theory for optimization problems with interval-valued objective functions. J. Optim. Theory Appl. 144, 615–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, S.T.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186, 17–27 (2008)

    Article  MATH  Google Scholar 

  38. Ojha, A.K., Das, A.K.: Geometric programming problem with coefficients and exponents associated with binary numbers. Int. J. Comput. Sci. 7(1/2), 49–55 (2010)

    Google Scholar 

  39. Dinkle, J.J., Tretter, M.J.: An interval arithmetic approach to sensitivity analysis in geometric programming. Oper. Res. 35, 866–869 (1987)

    Google Scholar 

  40. Liu, S.T.: Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168, 345–353 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Editor-in-Chief and Referees for their encouragement and constructive comments in revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Mahapatra.

Additional information

Communicated by Mordecai Avriel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, G.S., Mandal, T.K. Posynomial Parametric Geometric Programming with Interval Valued Coefficient. J Optim Theory Appl 154, 120–132 (2012). https://doi.org/10.1007/s10957-012-9996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-9996-6

Keywords