Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Digital Twin Framework for Large-Scale Optimization Problems in Supply Chains: A Case of Packing Problem

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The development of new information technologies at the beginning of the 21st century allows the integration between the physical and the virtual world. In Engineering, an emerging technology called digital twins is presented as the mechanism to virtualize the operation of devices, machines and processes. In industrial engineering and specifically in supply chains there is a growing interest in the development of digital twins. For this reason, this paper proposes the integration of large-scale optimization problems in a digital platform that allows the solution of these problems for decision-making in real time. Bin-Packing and Vehicle Routing problems are addressed through the interface of a commercial supply chain management platform and heuristic optimization algorithms. We use technology based on simulation of discrete events to achieve the periodic decisions that make up the Digital Supply ChainTwin engine. A hypothetical case solution is presented to verify the performance of the proposed development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. anyLogistix: Supply chain digital twins (2021). https://www.anylogistix.com/supply-chain-digital-twins/

  2. Aydın N, Muter İ, Birbil İ (2020) Multi-objective temporal bin packing problem: An application in cloud computing. Comput Oper Res 121:104959. https://doi.org/10.1016/j.cor.2020.104959. https://www.sciencedirect.com/science/article/pii/S0305054820300769

    Article  MathSciNet  Google Scholar 

  3. Balderas D, Ortiz A, Méndez E, Ponce P, Molina A (2021) Empowering digital twin for industry 4.0 using metaheuristic optimization algorithms: case study pcb drilling optimization. Int J Adv Manuf Technol 113(5):1295–1306

    Article  Google Scholar 

  4. Busse A, Gerlach B, Lengeling JC, Poschmann P, Werner J, Zarnitz S (2021) Towards digital twins of multimodal supply chains. Logistics 5(2). https://doi.org/10.3390/logistics5020025. https://www.mdpi.com/2305-6290/5/2/25

  5. Dell’Amico M, Furini F, Iori M (2020) A branch-and-price algorithm for the temporal bin packing problem. Comput Oper Res 114:104825

    Article  MathSciNet  Google Scholar 

  6. Dotoli M, Epicoco N, Falagario M, Costantino N, Turchiano B (2015) An integrated approach for warehouse analysis and optimization: A case study. Comput Industry 70:56–69. https://doi.org/10.1016/j.compind.2014.12.004. https://www.sciencedirect.com/science/article/pii/S0166361514002097

    Article  Google Scholar 

  7. Ekici A (2021) Bin packing problem with conflicts and item fragmentation. Comput Oper Res 126:105113. https://doi.org/10.1016/j.cor.2020.105113. https://www.sciencedirect.com/science/article/pii/S0305054820302306

    Article  MathSciNet  Google Scholar 

  8. Erbayrak S, Özkır V, Mahir Yıldırım U (2021) Multi-objective 3d bin packing problem with load balance and product family concerns. Comput Industr Eng 159:107518. https://doi.org/10.1016/j.cie.2021.107518. https://www.sciencedirect.com/science/article/pii/S0360835221004228

    Article  Google Scholar 

  9. Ghiani G, Improta G (2000) An efficient transformation of the generalized vehicle routing problem. European J Oper Res 122(1):11–17. https://doi.org/10.1016/S0377-2217(99)00073-9. https://www.sciencedirect.com/science/article/pii/S0377221799000739

    Article  MathSciNet  Google Scholar 

  10. Guo J, Zhao N, Sun L, Saipeng Z (2019) Modular based flexible digital twin for factory design. J. Ambient. Intell. Humaniz. Comput. 10:1189–1200

    Article  Google Scholar 

  11. He K, Tole K, Ni F, Yuan Y, Liao L (2021) Adaptive large neighborhood search for solving the circle bin packing problem. Comput Oper Res 127:105140. https://doi.org/10.1016/j.cor.2020.105140. https://www.sciencedirect.com/science/article/pii/S0305054820302574

    Article  MathSciNet  Google Scholar 

  12. Huang S, Guo Y, Zha S, Wang Y (2019) An internet-of-things-based production logistics optimisation method for discrete manufacturing. Int. J. Comput. Integr. Manuf. 32(1):13–26

    Article  Google Scholar 

  13. Ivanov D (2020) Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (covid-19/sars-cov-2) case. Transportation Research Part E: Logistics and Transportation Review 136:101922. https://doi.org/10.1016/j.tre.2020.101922. http://www.sciencedirect.com/science/article/pii/S1366554520304300

    Article  Google Scholar 

  14. Ivanov D, Dolgui A (2020) A digital supply chain twin for managing the disruption risks and resilience in the era of industry 4.0. Production Planning & Control: 1–14

  15. Jacobs FR, Whybark DC (2000) Why ERP?: A primer on SAP implementation, vol 31. Irwin/McGraw-Hill, New York

    Google Scholar 

  16. Kang K, Moon I, Wang H (2012) A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem. Appl. Math. Comput. 219(3):1287–1299

    MathSciNet  MATH  Google Scholar 

  17. Lin P, Li M, Kong X, Chen J, Huang GQ, Wang M (2018) Synchronisation for smart factory - towards iot-enabled mechanisms. Int J Comput Integrated Manuf 31(7):624–635. https://doi.org/10.1080/0951192X.2017.1407445

    Article  Google Scholar 

  18. Marmolejo-Saucedo JA (2020) Design and development of digital twins: a case study in supply chains. Mobile Netw Appl 25:2141–2160

    Article  Google Scholar 

  19. Martello S, Pisinger D, Vigo D (2000) The three-dimensional bin packing problem. Oper. Res. 48:256–267

    Article  MathSciNet  Google Scholar 

  20. Martello S, Toth P (1990) Lower bounds and reduction procedures for the bin packing problem. Discrete Appl Math 28(1):59–70

    Article  MathSciNet  Google Scholar 

  21. Martinovic J, Selch M (2021) Mathematical models and approximate solution approaches for the stochastic bin packing problem. Comput Oper Res: 105439. https://doi.org/10.1016/j.cor.2021.105439. https://www.sciencedirect.com/science/article/pii/S0305054821001945

  22. Martinovic J, Strasdat N, Selch M (2021) Compact integer linear programming formulations for the temporal bin packing problem with fire-ups. Comput Oper Res 132:105288. https://doi.org/10.1016/j.cor.2021.105288. https://www.sciencedirect.com/science/article/pii/S0305054821000800

    Article  MathSciNet  Google Scholar 

  23. Min Q, Lu Y, Liu Z, Su C, Wang B (2019) Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manag. 49:502–519

    Article  Google Scholar 

  24. MOICON: Cloud-based digital twin (2021). https://www.moicon.net/about

  25. Moshood TD, Nawanir G, Sorooshian S, Okfalisa O (2021) Digital twins driven supply chain visibility within logistics: A new paradigm for future logistics. Appl Sys Innovation 4(2). https://doi.org/10.3390/asi4020029. https://www.mdpi.com/2571-5577/4/2/29

  26. Rasheed K (2012) Oracle JD Edwards Enterpriseone 9.0: Supply Chain Management Cookbook Packt Publishing Ltd

  27. Schleich B, Anwer N, Mathieu L, Wartzack S (2017) Shaping the digital twin for design and production engineering. CIRP Annals 66(1):141–144. https://doi.org/10.1016/j.cirp.2017.04.040. https://www.sciencedirect.com/science/article/pii/S0007850617300409

    Article  Google Scholar 

  28. Tao F, Zhang H, Liu A, Nee AYC (2019) Digital twin in industry: State-of-the-art. IEEE Trans Industrial Informatics 15(4):2405–2415. https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  29. Zaccaria V, Stenfelt M, Aslanidou I, Kyprianidis KG (2018) Fleet monitoring and diagnostics framework based on digital twin of aero-engines. In: Turbo Expo: Power for Land, Sea, and Air, vol. 51128, p. V006T05A021. American Society of Mechanical Engineers

  30. Zadeh AH, Sengupta A, Schultz T, et al (2020) Enhancing erp learning outcomes through microsoft dynamics. J. Inf. Syst. Educ. 31(2):83–95

    Google Scholar 

  31. Zhao H, She Q, Zhu C, Yang Y, Xu K (2020) Online 3d bin packing with constrained deep reinforcement learning. arXiv:2006.14978

  32. Zhou C, Xu J, Miller-Hooks E, Zhou W, Chen CH, Lee LH, Chew EP, Li H (2021) Analytics with digital-twinning: A decision support system for maintaining a resilient port. Decision Support Systems 143:113496. https://doi.org/10.1016/j.dss.2021.113496. https://www.sciencedirect.com/science/article/pii/S0167923621000063

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Marmolejo-Saucedo.

Ethics declarations

Conflict of Interests

The author declare that he does not have conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmolejo-Saucedo, J.A. Digital Twin Framework for Large-Scale Optimization Problems in Supply Chains: A Case of Packing Problem. Mobile Netw Appl 27, 2198–2214 (2022). https://doi.org/10.1007/s11036-021-01856-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-021-01856-9

Keywords