Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimation of atmospheric light based on gaussian distribution

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Existing defogging algorithms use a small number of sample points to estimate the atmospheric light, which leads to poor defogging effect. To solve this problem, a novel Gaussian distribution based algorithm for atmospheric light estimation is proposed. The algorithm has the following features: it uses a brightness threshold to select the candidate points to increase the number of initial samples; it uses clustering algorithms to merge the point clusters for increasing the samples included in the candidate point cluster; it uses a proportional threshold to filter out unreasonable point clusters; it regards each candidate point cluster as a single light source and calculates their influence on surrounding pixels with a Gaussian-distribution-based model; and it uses an atmospheric light map (instead of a constant value) to restore the image. The experimental results suggest that the defogging results produced by the proposed algorithm look more natural than the original algorithm under subjective vision and the objective image quality evaluation indicators are also excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agaian SS, Panetta K, Grigoryan AM (2000) A new measure of image enhancement. In: IASTED international conference on signal processing & communication, Citeseer, pp 19–22

  2. Choi L K, You J, Bovik A C (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  Google Scholar 

  3. Cozman F, Krotkov E (1997) Depth from scattering. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings, IEEE, pp 801–806

  4. Hautière N, Tarel JP, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology 27(2):87–95

    Article  MathSciNet  Google Scholar 

  5. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  6. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 6:1397–1409

    Article  Google Scholar 

  7. Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137

    Article  Google Scholar 

  8. Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242

    Article  Google Scholar 

  9. Lu H, Li Y, Nakashima S, Serikawa S (2016) Single image dehazing through improved atmospheric light estimation. Multimed Tools Appl 75(24):17081–17096

    Article  Google Scholar 

  10. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254

    Article  Google Scholar 

  11. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724

    Article  Google Scholar 

  12. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE workshop on color and photometric methods in computer vision, France, vol 6, pp 1

  13. Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The proceedings of the 17th IEEE international conference on computer vision, 1999, IEEE, vol 2

  14. Oakley JP, Satherley BL (1998) Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans Image Process 7(2):167–179

    Article  Google Scholar 

  15. Park H, Park D, Han DK, Ko H (2014) Single image haze removal using novel estimation of atmospheric light and transmission. In: 2014 IEEE international conference on image processing (ICIP). IEEE, pp 4502–4506

  16. Sulami M, Glatzer I, Fattal R, Werman M (2014) Automatic recovery of the atmospheric light in hazy images. In: 2014 IEEE international conference on computational photography (ICCP). IEEE, pp 1–11

  17. Sun W, Wang H, Sun C, Guo B, Jia W, Sun M (2015) Fast single image haze removal via local atmospheric light veil estimation. Comput Electr Eng 46:371–383

    Article  Google Scholar 

  18. Wang YK, Fan CT (2014) Single image defogging by multiscale depth fusion. IEEE Trans Image Process 23(11):4826–4837

    Article  MathSciNet  Google Scholar 

  19. Wu D, Qs Zhu (2015) The latest research progress of image dehazing. Acta Automatica Sinica 41(2):221–239

    Google Scholar 

  20. Zhang L, Li X, Hu B, Ren X (2015) Research on fast smog free algorithm on single image. In: 2015 1st international conference on computational intelligence theory, systems and applications (CCITSA), IEEE, pp 177–182

  21. Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intell Syst Technol (TIST) 8(3):43

    Google Scholar 

  22. Zhang S, Li X, Zong M, Zhu X, Wang R (2018) Efficient knn classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst 29 (5):1774–1785

    Article  MathSciNet  Google Scholar 

  23. Zhang W, Hou X (2018) Light source point cluster selection-based atmospheric light estimation. Multimed Tools Appl 77(3):2947–2958

    Article  Google Scholar 

  24. Zhao H, Xiao C, Yu J, Xu X (2015) Single image fog removal based on local extrema. IEEE/CAA Journal of Automatica Sinica 2(2):158–165

    Article  MathSciNet  Google Scholar 

  25. Zhu Q, Mai J, Shao L, et al (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533

    Article  MathSciNet  Google Scholar 

  26. Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750

    Article  MathSciNet  Google Scholar 

  27. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  28. Zhu X, Suk HI, Lee SW, Shen D (2016) Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans Biomed Eng 63(3):607–618

    Article  Google Scholar 

  29. Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Lu, J., Xu, X. et al. Estimation of atmospheric light based on gaussian distribution. Multimed Tools Appl 78, 33401–33414 (2019). https://doi.org/10.1007/s11042-019-7401-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7401-2

Keywords