Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Solving ill-posed Image Processing problems using Data Assimilation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Data Assimilation is a mathematical framework used in environmental sciences to improve forecasts performed by meteorological, oceanographic or air quality simulation models. It aims to solve an evolution equation, describing the temporal dynamics, and an observation equation, linking the state vector and observations. In this article we use this framework to study a class of ill-posed Image Processing problems, usually solved by spatial and temporal regularization techniques. An approach is proposed to convert an ill-posed Image Processing problem in terms of a Data Assimilation system, solved by a 4D-Var method. This is illustrated by the estimation of optical flow from a noisy image sequence, with the dynamic model ensuring the temporal regularity of the result. The innovation of the paper concerns first, the extensive description of the tasks to be achieved for going from an image processing problem to a data assimilation description; second, the theoretical analysis of the covariance matrices involved in the algorithm; and third a specific discretisation scheme ensuring the stability of computation for the application on optical flow estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vis. 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  2. Apte, A., Jones, C.K.R.T., Stuart, A.M., Voss, J.: Data assimilation: Mathematical and statistical perspectives. Int. J. Numer. Methods Fluids 56, 1033–1046 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proceedings of European Conference on Computer Vision, Prague, Czech Republic, vol. 4, pp. 25–36. Springer (2004)

  4. Hadamard, J.: Lecture on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)

    Google Scholar 

  5. Herlin, I., Le Dimet, F.-X., Huot, E., Berroir, J.-P.: Coupling models and data: which possibilities for remotely-sensed images? In: Prastacos, P., Cortés, U., De León, J.-L.D., Murillo, M. (eds.) e-Environment: Progress and Challenge. Research on Computing Science, vol. 11, pp. 365–383. Instituto Politécnico Nacional (2004)

  6. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  7. Huot, E., Herlin, I., Korotaev, G.: Assimilation of SST satellite images for estimation of ocean circulation velocity. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA (2008)

  8. Le-Dimet, F., Talagrand, O.: Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects, pp. 97–110. Tellus (1986)

  9. Le Dimet, F.-X., Navon, I.M., Daescu, D.N.: Second-order information in data assimilation. Mon. Weather Rev. 130, 629–648 (2002)

    Article  Google Scholar 

  10. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. XLII, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  11. Nagel, H.-H.: Displacement vectors derived from second-order intensity variations in image sequences. Comput. Vis. Graph. Image Process. 21, 85–117 (1983)

    Article  Google Scholar 

  12. Odobez, J.-M., Bouthemy, P.: Direct incremental model-based image motion segmentation for video analysis. Signal Process. 66(2), 143–155 (1998)

    Article  MATH  Google Scholar 

  13. Oliver, D.S.: Calculation of the inverse of the covariance. Math. Geol. 30(7), 911–933 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Papadakis, N., Corpetti, T., Mémin, E.: Dynamically consistent optical flow estimation. In: Proceedings of International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)

  15. Papadakis, N., Héas, P., Mémin, E.: Image assimilation for motion estimation of atmospheric layers with shallow-water model. In: Proceedings of Asian Conference on Computer Vision, Tokyo, Japan, pp. 864–874 (2007)

  16. Papadakis, N., Mémin, E.: Variational optimal control technique for the tracking of deformable objects. In: Proceedings of International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)

  17. Papadakis, N., Mémin, E., Cao, F.: A variational approach for object contour tracking. In: Proceedings of ICCV’05 Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Beijing, China (2005)

  18. Perona, P., Malik, J.: Space scale and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  19. Proesmans, M., Van Gool, L., Pauwels, E., Oosterlinck, A.: Determination of optical flow and its discontinuities using non-linear diffusion. In: Proceedings of European Conference on Computer Vision, vol. 2, pp. 295–304 (1994)

  20. Sethian, J.A.: Level Set Methods. Cambridge University Press (1996)

  21. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics (2005)

  22. Tikhonov, A.N.: Regularization of incorrectly posed problems. Sov. Math. Dokl. 4, 1624–1627 (1963)

    MATH  Google Scholar 

  23. Verwer, J.G., Sportisse, B.: A note on operator splitting in a stiff linear case. Technical Report MAS-R9830, Center voor Wiskunde en Informatica (1998)

  24. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner-Verlag, Stuttgart. ISBN:3-519-02606-6 (1998)

  25. Weickert, J.: Applications of nonlinear diffusion in image processing and computer vision. In: Acta Math. Univ. Comenianae. Proceeding of Algoritmy 2000, vol. LXX, pp. 33–50 (2001)

  26. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14, 245–255 (2001)

    Article  MATH  Google Scholar 

  27. Witkin, A.P.: Scale-space filtering. In: Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany, pp. 1019–1022 (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Béréziat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béréziat, D., Herlin, I. Solving ill-posed Image Processing problems using Data Assimilation. Numer Algor 56, 219–252 (2011). https://doi.org/10.1007/s11075-010-9383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9383-z

Keywords