Abstract
Nowadays, quantum simulation schemes come in two flavours. Either they are continuous-time discrete-space models (a.k.a Hamiltonian-based), pertaining to non-relativistic quantum mechanics. Or they are discrete-spacetime models (a.k.a quantum walks or quantum cellular automata based) enjoying a relativistic continuous-spacetime limit. We provide a first example of a quantum simulation scheme that unifies both approaches. The proposed scheme supports both a continuous-time discrete-space limit, leading to lattice fermions, and a continuous-spacetime limit, leading to the Dirac equation. The transition between the two can be thought of as a general relativistic change of coordinates, pushed to an extreme. As an emergent by-product of this procedure, we obtain a Hamiltonian for lattice fermions in curved spacetime with synchronous coordinates.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
No data sets were generated or analysed during the current study.
Notes
Notice that \(H_L\) commutes with \(\sigma _x\), thus preserving the chiral symmetry w.r.t the components of the spinor \(\Psi = (\psi ^+,\psi ^-)^\intercal \). This will no longer be true when we introduce the mass, which notoriously breaks chirality.
In order to recover a massless Hamiltonian commuting with \(\sigma _y\), we can choose the operator
$$\begin{aligned} U'=\begin{pmatrix} 1 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad e^{-i \zeta }\sin \theta &{}\quad -\cos \theta &{}\quad 0\\ 0 &{}\quad \cos \theta &{}\quad -e^{i \zeta }\sin \theta &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 \end{pmatrix} \end{aligned}$$
References
Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012)
Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94(1), 012335 (2016)
Arnault, P., Pérez, A., Arrighi, P., Farrelly, T.: Discrete-time quantum walks as fermions of lattice gauge theory. Phys. Rev. A 99, 032110 (2019)
Arrighi, P., Patricot, C.: A note on the correspondence between qubit quantum operations and special relativity. J. Phys. A Math. Gen. 36(20), L287–L296 (2003)
Arrighi, P., Grattage, J.: A quantum game of life. In: Second Symposium on Cellular Automata “Journées Automates Cellulaires” (JAC 2010), Turku, December 2010. TUCS Lecture Notes 13, pp. 31–42 (2010)
Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012)
Arrighi, P., Facchini, F.: Quantum walking in curved spacetime: \((3+1)\) dimensions, and beyond. Quantum Inf. Comput. 17(9–10), 0810–0824 (2017). arXiv:1609.00305
Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. J. Comput. Syst. Sci. 77, 372–378 (2010)
Arrighi, P., Nesme, V., Forets, M.: The dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor. 47(46), 465302 (2014)
Arrighi, P., Facchini, S., Forets, M.: Quantum walking in curved spacetime. Quantum Inf. Process. 15, 3467–3486 (2016)
Arrighi, P., Bény, C., Farrelly, T.: A quantum cellular automaton for one-dimensional qed. (2019). arXiv:1903.07007
Bialynicki-Birula, I.: Weyl, dirac, and maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49, 6920–6927 (1994)
Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly special relativity from quantum cellular automata. EPL (Europhys. Lett.) 109(5), 50003 (2015)
Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, weyl equation and the lorentz group. Found. Phys. 47(8), 1065–1076 (2017)
Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Thirring quantum cellular automaton. Phys. Rev. A 97(3), 032132 (2018)
Cedzich, C., Geib, T., Werner, A.H., Werner, R.F.: Quantum walks in external gauge fields. (2018). arXiv:1808.10850v1
Debbasch, F.: Action principles for quantum automata and lorentz invariance of discrete time quantum walks. ArXiv preprint arXiv:1806.02313 (2018)
Di Molfetta, G., Pérez, A.: Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys. 18(10), 103038 (2016)
Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks as massless Dirac fermions in curved space-time. Phys. Rev. A 88(4), 042301 (2013)
Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks in artificial electric and gravitational fields. Physica A 397, 157–168 (2014)
Eisert, J., Gross, D.: Supersonic quantum communication. Phys. Rev. Lett. 102(24), 240501 (2009)
Feynman, H.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965). (Feynman relativistic chessboard)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)
Feynman, R.P.: Quantum mechanical computers. Found. Phys. (Hist. Arch.) 16(6), 507–531 (1986)
Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110(19), 190601 (2013)
Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)
Gerritsma, R., Kirchmair, G., Florian Zähringer, E., Solano, R.B., Roos, C.F.: Quantum simulation of the dirac equation. Nature 463(7277), 68–71 (2010)
Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for fermionic quantum field theories. (2014). arXiv:1404.7115v1
Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018)
Klco, N., Dumitrescu, E.F., McCaskey, A.J., Morris, T.D., Pooser, R.C., Sanz, M., Solano, E., Lougovski, P., Savage, M.J.: Quantum-classical computation of schwinger model dynamics using quantum computers. Phys. Rev. A 98(3), 032331 (2018)
Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11(2), 395 (1975)
Mallick, A., Mandal, S., Karan, A., Chandrashekar, C.M.: Simulating Dirac Hamiltonian in curved space-time by split-step quantum walk. J. Phys. Commun. 3(1) (2019). https://doi.org/10.1088/2399-6528/aafe2f
Márquez-Martín, I., Di Molfetta, G., Pérez, A.: Fermion confinement via quantum walks in \((2+ 1)\)-dimensional and \((3+ 1)\)-dimensional space-time. Phys. Rev. A 95(4), 042112 (2017)
Martinez, E.A., Muschik, C.A., Schindler, P., Nigg, D., Erhard, A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P., et al.: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534(7608), 516–519 (2016)
Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)
Osborne, T.J.: Continuum limits of quantum lattice systems. (2019). arXiv:1901.06124v1
Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)
Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv preprint arXiv:quant-ph/0405174 (2004)
Strauch, F.W.: Connecting the discrete-and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)
Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Physica D 69(3), 327–332 (1993)
Villegas, K.H., Esguerra, J.P.: Lattice gauge theory and gluon color-confinement in curved spacetime. Mod. Phys. Lett. A 30(05), 1550020 (2015)
Yamamoto, A.: Lattice qcd in curved spacetimes. Phys. Rev. D 90(5), 054510 (2014)
Zohar, E., Cirac, J.I., Reznik, B.: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79(1), 014401 (2015)
Acknowledgements
The authors would like to thank Pablo Arnault and Cédric Bény for motivating discussions.
Author information
Authors and Affiliations
Contributions
GDM and PA contributed equally to the main results of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Di Molfetta, G., Arrighi, P. A quantum walk with both a continuous-time limit and a continuous-spacetime limit. Quantum Inf Process 19, 47 (2020). https://doi.org/10.1007/s11128-019-2549-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2549-2