Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Measurement dependence in tripartite non-locality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The assumption of measurement independence is essential for the derivation of Bell’s inequalities under local, realistic conditions. Violations of these inequalities indicate that the assumption of measurement independence must be relaxed to some extent in order to obtain locally realistic models. The extent to which this assumption needs to be relaxed to achieve violations of certain bipartite Bell inequalities has been studied in Hall (Phys Rev Lett 105:250404, 2010) and Friedman (Phys Rev A 99:012121, 2019). In this paper, we investigate the minimal degree of relaxation required to simulate violations of various known tripartite Bell inequalities. We also provide local deterministic models that achieve these violations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Google Scholar 

  2. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    ADS  Google Scholar 

  3. Benaszek, K., Wodkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 10 (2009)

    MathSciNet  Google Scholar 

  4. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

    ADS  Google Scholar 

  5. Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    ADS  Google Scholar 

  6. Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    ADS  Google Scholar 

  7. Hensen, B., et al.: Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis. Sci. Rep. 6, 30289 (2016)

    ADS  Google Scholar 

  8. Rosenfeld, W., et al.: Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017)

    ADS  Google Scholar 

  9. Abellan, C., et al.: Challenging local realism with human choices. Nature 557, 212 (2018)

    ADS  Google Scholar 

  10. Kaiser, D.T.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)

    ADS  Google Scholar 

  11. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  12. Larsson, J.A.: Loopholes in Bell inequality tests of local realism. J. Phys. A 47, 424003 (2014)

    MathSciNet  Google Scholar 

  13. Gachechildze, M., Miklin, N., Chaves, R.: Quantifying causal influences in the presence of a quantum common cause. Phys. Rev. Lett. 124, 230401 (2020)

    MathSciNet  Google Scholar 

  14. Li, M.H., et al.: Test of local realism into the past without detection and locality loopholes. Phys. Rev. Lett. 121, 080404 (2018)

    ADS  Google Scholar 

  15. Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011)

    ADS  Google Scholar 

  16. Koh, D.E., et al.: Effects of reduced measurement independence on Bell-based randomness expansion. Phys. Rev. Lett. 109, 160404 (2012)

    ADS  Google Scholar 

  17. Hall, M.J.M.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)

    ADS  Google Scholar 

  18. Hall, M.J.M.: Relaxed Bell inequalities and Kochen–Specker theorems. Phys. Rev. A 84, 022102 (2011)

    ADS  MathSciNet  Google Scholar 

  19. Banik, M., Gazi, M.R., Das, S., Ray, A., Kunkri, S.: Macroscopic locality with equal bias reproduces with high delity a quantum distribution achieving the Tsirelson’s bound. J. Phys. A Math. Theor. 45, 205301 (2012)

    ADS  Google Scholar 

  20. Putz, G., Rosset, D., Barnea, T.J., Liang, Y.C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)

    ADS  Google Scholar 

  21. Friedman, A.S., Guth, H., Hall, M.J.W., Kaiser, D.I., Gallicchio, J.: Relaxed Bell inequalities with arbitrary measurement dependence for each observer. Phys. Rev. A 99, 012121 (2019)

    ADS  Google Scholar 

  22. Kofler, J., Paterek, T., Brukner, C.: Experimenter’s freedom in Bell’s theorem and quantum cryptography. Phys. Rev. A 73, 022104 (2006)

    ADS  Google Scholar 

  23. Weinstein, S.: Nonlocality without nonlocality. Found. Phys. 39, 921 (2009)

    ADS  MathSciNet  Google Scholar 

  24. Mukherjee, K., Paul, B., Sarkar, D.: Efficient test to demonstrate genuine three particle nonlocality. J. Phys. A Math. Theor. 48, 465302 (2015)

    ADS  MathSciNet  Google Scholar 

  25. Hall, M.J.W., Branciard, C.: Measurement-dependence cost for Bell nonlocality: causal versus retrocausal models. Phys. Rev. A 102, 052228 (2020)

    ADS  MathSciNet  Google Scholar 

  26. Galliccchio, J., Friedman, A.S., Kaiser, D.I.: Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)

    ADS  Google Scholar 

  27. Aktas, D., Tanzilli, S., Martin, A., Putz, G., Thew, R., Gisin, N.: Demonstration of quantum nonlocality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015)

    ADS  Google Scholar 

  28. Proietti, M., et al.: Experimental test of local observer independence. Sci. Adv. 5, 9 (2019)

    Google Scholar 

  29. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    ADS  Google Scholar 

  30. Pironio, S., Acin, A., Brunner, N., Massar, S., Scrani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)

    ADS  Google Scholar 

  31. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    ADS  Google Scholar 

  32. Wei, K., et al.: High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030 (2020)

    Google Scholar 

  33. Cerf, N.J., Gisin, N., Massr, S., Popescu, S.: Simulating maximal quantum entanglement without communication. Phys. Rev. Lett. 94, 220403 (2005)

    ADS  Google Scholar 

  34. Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)

    Google Scholar 

  35. Gallego, R., et al.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013)

    ADS  Google Scholar 

  36. Liu, Y., et al.: Device-independent quantum random-number generation. Nature 562, 548 (2018)

    ADS  Google Scholar 

  37. Bierhorst, P., et al.: Experimentally generated randomness certified by the impossibility of superluminal signals. Nature 556, 223 (2018)

    ADS  Google Scholar 

  38. Shen, L., et al.: Randomness extraction from Bell violation with continuous parametric down-conversion. Phys. Rev. Lett. 121, 150402 (2018)

    ADS  Google Scholar 

  39. Hall, M.J.W.: Complementary contributions of indeterminism and signaling to quantum correlations. Phys. Rev. A 82, 062117 (2010)

    ADS  Google Scholar 

  40. Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003)

    ADS  Google Scholar 

  41. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)

    ADS  MathSciNet  Google Scholar 

  42. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. 65, 1838 (1990)

    ADS  MathSciNet  Google Scholar 

  43. Bancal, J.D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. PhLettys. Rev. A 88, 014102 (2013)

    ADS  Google Scholar 

  44. Erven, C., et al.: Experimental three-particle quantum nonlocality under strict locality conditions. Nat. Photonics 8, 292–296 (2014)

    ADS  Google Scholar 

  45. Pal, K.F., Vertesi, T.: Closing the detection loophole in tripartite Bell tests using the W state. Phys. Rev. A 92, 022103 (2015)

    ADS  Google Scholar 

  46. Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114, 090501 (2015)

    ADS  Google Scholar 

  47. Ribeiro, J., Murta, G., Wehner, S.: Fully device-independent conference key agreement. Phys. Rev. A 97, 022307 (2018)

    ADS  Google Scholar 

  48. Zhu, C., Xu, F., Pei, C.: W-state analyzer and multi-party measurement-device-independent quantum key distribution. Sci. Rep. 5, 17449 (2015)

    ADS  Google Scholar 

  49. Zukowski, M., Brukner, C.: Bell’s theorem for general N-Qubit states. Phys. Rev. Lett. 88, 210401 (2002)

    ADS  MathSciNet  Google Scholar 

  50. Fuchs, C.A., Graaf, J.V.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Tran. Inf. Ther. 45, 1216 (1999)

    MathSciNet  Google Scholar 

  51. Mitchell, P., Popescu, S., Roberts, D.: Conditions for the confirmation of three-particle nonlocality. Phys. Rev. A 70, 060101(R) (2002)

    MathSciNet  Google Scholar 

  52. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    ADS  MathSciNet  Google Scholar 

  53. Pironio, S., Bancal, J.D., Scarani, V.: Extremal correlations of the tripartite no-signaling polytope. J. Phys. A Math. Theo. 44, 065303 (2011)

    ADS  MathSciNet  Google Scholar 

  54. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    ADS  MathSciNet  Google Scholar 

  55. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    ADS  Google Scholar 

  56. Collins, D., Gisin, N., Linda, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    ADS  MathSciNet  Google Scholar 

  57. Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96, 060406 (2006)

    ADS  MathSciNet  Google Scholar 

  58. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    ADS  Google Scholar 

  59. Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

S. H. acknowledge M. J. W. Hall for his valuable advice in forming this models. M. K. M. acknowledges G. Kar for fruitful discussions. M. K. M. also acknowledges support from UGC, India, A. K. acknowledges support from CSIR, India and the authors I. Chattopadhyay and D. Sarkar acknowledge the work as part of QuEST initiatives by DST India.

Author information

Authors and Affiliations

Authors

Contributions

“A wrote the main manuscripts. B.C. and D prepared tables 1, 2, 3. E.F. guided the work. All authors reviewed the manuscripts.”

Corresponding author

Correspondence to Sk Sahadat Hossain.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: relaxed Mermin inequality

In tripartite system with two measurement settings for each party and each measurement has two possible outcomes (as mentioned in Sect. (2.1)) standard tripartite non-locality is detected via the violation of Mermin inequality [42] which has the expression,

$$\begin{aligned} \vert S_\textit{M} \vert = \vert \langle A_1B_0C_0 \rangle +\langle A_0B_1C_0 \rangle +\langle A_0B_0C_1 \rangle -\langle A_1B_1C_1 \rangle \vert \le 2. \end{aligned}$$
(A1)

Hence, \(S_\textit{M} = \langle A_1 B_0 C_0 \rangle + \langle A_0 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle - \langle A_1 B_1 C_1 \rangle \).

Following the ideas of [19, 21], here in a deterministic no-signaling model, we apply arbitrary measurement dependence in either of the parties measurement settings. In this model, the measurement outcomes are noted as \( u(A_{x},\;\lambda ),\;u(A_{x'},\;\lambda ) \) each taking values from the set \( \lbrace 1, -1\rbrace \) for Alice’s outcome. Identical interpretation follows for \( v(B_{y},\;\lambda ),\;v(B_{y'},\;\lambda ) \) and \( w(C_{z},\;\lambda ),\;w(C_{z'},\;\lambda ) \) accordingly.

Let us assume the three parties perform their spin measurements along the directions \( A_{\hat{m}} \), \( B_{\hat{m}} \) and \( C_{\hat{m}} \), respectively, where the measurement direction for the party X (\( = A, \,B,\,C \)) is denoted as \( X_{\hat{m}}\; \equiv \, (\sin \theta _{X_{\hat{m}}} \cos \phi _{X_{\hat{m}}}, \sin \theta _{X_{\hat{m}}}\sin \phi _{X_{\hat{m}}}, \cos \theta _{X_{\hat{m}}}) \), with \( \theta _{X_{\hat{m}}} \in [0, \pi ] \) and \( \phi _{X_{\hat{m}}} \in [0, 2\pi ] \). The correlation is defined as \(\langle A_1 B_0 C_0 \rangle \) = \(\int {\rho (\lambda |x^{'},\;y,\;z)u(A_{x'},\;\lambda )\; v(B_y,\;\lambda )\; w(C_z,\;\lambda )\;\textrm{d}\lambda }\), and similarly other terms of the expression follows as well. Using these quantities the parameter \(S_{\textit{M}}\) then gives,

\(S_{\textit{M}} = \int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\)+ \(\int \rho (\lambda |x,\;y',\;z)\;u(A_x,\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) + \(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) - \( \int {\rho (\lambda |x',\;y',\;z')\; u(A_{x'},\;\lambda )\; v(B_{y'},\;\lambda )\; w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

We next introduce the measurement dependence factors in \( S_{\textit{M}} \) by using simple mathematical process as follow,

\( S_{\textit{M}} = \int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda } - \int \rho (\lambda |x,\;y,\;z)\;u(A_x,\lambda )\; v(B_y,\;\lambda )\; w(C_z,\;\lambda )\;\textrm{d }\lambda \) + \(\int \rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) + \(\int \rho (\lambda |x,\;y',\;z)\; u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda + \int \rho (\lambda |x,\;y,\;z')\; u(A_x,\;\lambda )v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \) + \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda - \int \rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).

\(= \int {[\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )-\rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )]\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\) + \(\int {[\rho (\lambda |x,\;y,\;z)\;v(B_y,\;\lambda )+\rho (\lambda |x,\;y',\;z)\;v(B_{y'},\;\lambda )]\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda ) -\rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )]\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x',\;y,\;z')\;v(B_y,\;\lambda )-\rho (\lambda |x',\;y',\;z')\;v(B_{y'},\;\lambda )]\;u(A_{x'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

\(=\int {[\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z)\;\frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z)\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\) -\(\int [\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x,\;y,\;z')\;\frac{u(A_{x},\;\lambda )}{u(A_x',\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda +\int {[\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)

In this scenario, we are considering measurement dependence for Alice or Bob’s measurement settings over the variable \( \lambda \), hence the response functions \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}\) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}\) are function of \( \lambda \). Let us define \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )} \) = \(S_{1}(\rho (\lambda \vert x,\;y,\;z)-\rho (\lambda \vert x',\;y,\;z)) \) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )} \) = \(S_{2}(\rho (\lambda \vert x',\;y,\;z')-\rho (\lambda \vert x',\;y',\;z')) \) for given values of \( \lambda \), where \( S_{i} \)(\(\alpha \)) ( i = 1, 2, 3) is defined below (for simplicity we will use the notation \( S_{1}\) and \( S_{2} \) onward )

$$\begin{aligned} S_{i}(\alpha )= Sign(\alpha )= {\left\{ \begin{array}{ll} 1, &{} \text {if } \alpha \ge 0\\ -1, &{} \text {otherwise} \end{array}\right. } \end{aligned}$$

Hence, \( S_{M} = \int [\rho (\lambda |x',\;y,\;z)- S_{1} \rho (\lambda |x,\;y,\;z)] \; u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) + \(\int [\rho (\lambda |x,\;y,\;z)+ S_{2}\rho (\lambda |x,\;y',\;z)] \;u(A_{x},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) + \(\int [ \rho (\lambda |x,\;y,\;z')S_{1}- \rho (\lambda |x',\;y,\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda )\, \textrm{d}\lambda \) + \(\int [ \rho (\lambda |x',\;y,\;z')-S_{2} \rho (\lambda |x',\;y',\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda ) \;\textrm{d}\lambda .\)

= \( \int [\rho (\lambda |x',\;y,\;z)-S_{1}\rho (\lambda |x',\;y,\;z)+S_{1}\rho (\lambda |x',\;y,\;z) - S_{1} \rho (\lambda |x,\;y,\;z)] \; u(A_{x'},\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\,\textrm{d}\lambda \) + \(\int [\rho (\lambda |x,\;y,\;z)-S_{2}\rho (\lambda |x,\;y,\;z)+S_{2}\rho (\lambda |x,\;y,\;z)+ S_{2}\rho (\lambda |x,\;y',\;z)] \;u(A_{x},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \)

+ \(\int [ \rho (\lambda |x,\;y,\;z')S_{1}-S_{1}\rho (\lambda |x',\;y,\;z')+S_{1}\rho (\lambda |x',\;y,\;z') - \rho (\lambda |x',\;y,\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda )\, \textrm{d}\lambda \) + \(\int [ \rho (\lambda |x',\;y,\;z')-S_{2}\rho (\lambda |x',\;y,\;z')+S_{2}\rho (\lambda |x',\;y,\;z')-S_{2} \rho (\lambda |x',\;y',\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda ) \;\textrm{d}\lambda .\)

Hence, \( \vert S_{M} \vert \le \int \vert S_{1} \vert \,\vert \rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z) \vert \,\textrm{d}\lambda + \int \vert S_{1} \vert \,\vert \rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z') \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z) \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z') \vert \,\textrm{d}\lambda + \int \vert 1-S_{1} \vert \rho (\lambda |x',\;y,\;z)\, \textrm{d}\lambda + \int \vert S_{1}-1 \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda +\int \vert 1-S_{2} \vert \rho (\lambda |x,\;y,\;z)\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda .\)

= \( T_{1} + T_{2}.\)

where \( T_{1} = \int \vert S_{1} \vert \,\vert \rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z) \vert \,\textrm{d}\lambda + \int \vert S_{1} \vert \,\vert \rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z') \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z) \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z') \vert \,\textrm{d}\lambda , \)

=\( 2 + M_{1} + M_{2} \)

and \( T_{2} = \int \vert 1-S_{1} \vert \rho (\lambda |x',\;y,\;z)\, \textrm{d}\lambda + \int \vert S_{1}-1 \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda +\int \vert 1-S_{2} \vert \rho (\lambda |x,\;y,\;z)\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda . \)

Case 1 Let us assume \( \lambda \) such that both \( S_{1} \) and \( S_{2} \) becomes positive, then it results \( T_{2} = 0. \)

Case 2 On the contrary, if \( \lambda \) is arbitrarily chosen, then \( S_{1} \) and \( S_{2} \) can take +1 or −1 in any occurrence of \( \lambda \). In such a scenario, \( \vert 1-S_{1/2} \vert \) will produce 0 or 2, and consequently, \( T_{2} \) will range between (0,8).

Hence, from the above analysis, an algebraic bound which can saturate Mermin inequality is possible, when \( T_{2} \) reduce to 0, therefore

$$\begin{aligned} \vert S_{\textit{M}}\vert \le 2 + M_{2} + 2M_{1}. \end{aligned}$$
(A2)

Following the same arguments and reordering the terms of \( S_{\textit{M}} \), we have,

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2 + 2 M_{1} + M_{3}. \end{aligned}$$
(A3)

Again we can rearrange the terms of \( S_{\textit{M}} \) such that we have the following structure

\( S_{\textit{M}} = \int [\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x',\;y,\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_{z},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda +\int [\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\textrm{d}\lambda \) +\(\int [\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x,\;y',\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_z,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) +\(\int {[\rho (\lambda |x,\;y',\;z')+\rho (\lambda |x,\;y,\;z')\;\frac{v(B_{y},\;\lambda )}{v(B_{y'},\;\lambda )}]\;u(A_{x},\;\lambda )\;v(B_{y'},\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)

Applying the same procedure as used in above paragraph, we have the saturated bound

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2 + 2 M_{3} + M_{2}. \end{aligned}$$
(A4)

Reshuffling the terms in above expression, it ensue

\( S_{\textit{M}} \) = \(\int [\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x',\;y,\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_{z},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) +\(\int {[\rho (\lambda |x',\;y,\;z')+\rho (\lambda |x,\;y,\;z')\;\frac{u(A_{x},\;\lambda )}{u(A_{x'},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) +\(\int {[\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x,\;y',\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_z,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda }\) + \(\int {[\rho (\lambda |x,\;y',\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{u(A_{x'},\;\lambda )}{u(A_{x},\;\lambda )}]\;u(A_{x},\;\lambda )\;v(B_{y'},\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)

Consequently, by the same reasoning as before the modified bound is

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2 + 2 M_{3} + M_{1}. \end{aligned}$$
(A5)

Since \( \vert S_{\textit{M}} \vert \) is less than or equal to the right-hand side of Eqs. (A2), (A3), (A4) and (A5), then it must be upper bounded by the minimum of these bounds, i.e.,

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2 + \lbrace 2M_{1}+ \min ( M_{2}, M_{3} ),\; 2M_{3}+ \min ( M_{2}, M_{1}) \rbrace . \end{aligned}$$
(A6)

Meanwhile, \( \vert S_{\textit{M}}\vert \le 4 \) [52, 53], therefore we arrive at

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2 + \lbrace 2M_{1}+ \min ( M_{2}, M_{3} ),\; 2M_{3}+ \min ( M_{2}, M_{1}),\;2 \rbrace . \end{aligned}$$
(A7)

Clearly, the formalism make no distinction between the observers detectors, we can carry out similar set of manipulation, reversing the arrangement of inputs for the parties, we finally obtain,

$$\begin{aligned} \vert S_{\textit{M}} \vert \le 2+ \min \lbrace 2M_{1}+ \min ( M_{2}, M_{3} ),\; 2M_{3}+ \min ( M_{2}, M_{1}),\;2M_{2}+ \min ( M_{1}, M_{3} ), \;2 \rbrace . \end{aligned}$$
(A8)

Meanwhile, it is worth mentioning that the above bounds may not tight, as we have gathered extra inputs in formulating the modified bounds.

Appendix B: relaxed Svetlichny inequality

Here our motivation is to establish the effect of measurement dependence in one-sided measurement settings for Svetlichny inequality [41], which has the following representation,

$$\begin{aligned} \vert S_{\textit{S}} \vert= & {} \langle A_0B_0C_0 \rangle +\langle A_0B_0C_1 \rangle +\langle A_1B_0C_0 \rangle -\langle A_1B_0C_1\rangle +\langle A_0 B_1C_0 \rangle - \langle A_0 B_1C_1 \rangle \nonumber \\{} & {} -\langle A_1B_1C_0 \rangle -\langle A_1B_1C_1 \rangle \vert \le 4. \end{aligned}$$
(B1)

Therefore, \( S_{\textit{S}} = \langle A_0 B_0 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle - \langle A_1 B_0 C_1 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_0 B_1 C_1 \rangle - \langle A_1 B_1 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \).

where \(\langle A_0 B_1 C_0 \rangle =\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\), with \(-1\le u(A_x,\;B_{y'},\;\lambda )\le 1;\;-1\le v(C_z,\lambda ) \le 1\),

and similarly we define other terms of \( S_{\textit{S}} \).

Let us assume the three parties perform their spin measurements along the directions \( A_{\hat{m}} \), \( B_{\hat{m}} \) and \( C_{\hat{m}} \), respectively, where the measurement direction for the party X (\( = A, \,B,\,C \)) is denoted as \( X_{\hat{m}}\; \equiv \, (\sin \theta _{X_{\hat{m}}} \cos \phi _{X_{\hat{m}}}, \sin \theta _{X_{\hat{m}}}\sin \phi _{X_{\hat{m}}}, \cos \theta _{X_{\hat{m}}}) \), with \( \theta _{X_{\hat{m}}} \in [0, \pi ] \) and \( \phi _{X_{\hat{m}}} \in [0, 2\pi ] \). Here also following the footprint of [19, 21], we have derived an modified form of Svetlichny inequality in a deterministic no-signaling scenario.

Therefore

\( S_{\textit{S}} =\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;B_y,\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;\textrm{d}\lambda }\) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'}\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda } - \int {\rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\)\(\int \rho (\lambda |x,\;y',\;z')\;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) - \(\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

= \(\int {u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;[\rho (\lambda |x,\;y,\;z)+\rho (\lambda |x',\;y,\;z)\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\;\textrm{d}\lambda }\) +\(\int u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;[\rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z')\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\;\textrm{d}\lambda \) +\(\int {u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;[\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x',\;y',\;z)\;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}]\;\textrm{d}\lambda }\)\(\int {u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;[\rho (\lambda |x,\;y',\;z')+\rho (\lambda |x',\;y',\;z')\;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}]\;\textrm{d}\lambda }\).

Since we have ascribed measurement dependence on Alice measurement settings, hence the response function \( \frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )} \) and \( \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )} \) are function of the hidden variable \( \lambda \).

We set, \( \frac{ u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )} = S_{1}(\rho (\lambda \vert x,\;y,\;z)-\rho (\lambda \vert x',\;y,\;z)) \) and \( \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )} = S_{2}(\rho (\lambda \vert x,\;y'\;z')-\rho (\lambda \vert x',\;y',\;z')) \),.

\( \therefore \) \(|S_{S}|\) \(\le \) \(\int \vert {u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y,\;z)+ S_{1}\;\rho (\lambda |x',\;y,\;z)]\vert \,\textrm{d}\lambda }\) + \(\int \vert {u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y,\;z')- S_{1}\;\rho (\lambda |x',\;y,\;z')]\vert \,\textrm{d}\lambda }\)+\(\int \vert u(A_x,\;B_{y'},\lambda )\;v(C_z,\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y',\;z)-S_{2}\;\rho (\lambda |x',\;y',\;z)]\vert \,\textrm{d}\lambda + \int \vert u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\vert \vert [\rho (\lambda |x,\;y',\;z')+S_{2}\;\rho (\lambda |x',\;y',\;z')]\vert \, \textrm{d}\lambda \).

\( \le \int \vert \rho (\lambda |x,\;y,\;z)-S_{1} \rho (\lambda |x,\;y,\;z)+S_{1} \rho (\lambda |x,\;y,\;z)+S_{1} \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y,\;z')-S_{1} \rho (\lambda |x,\;y,\;z')+S_{1} \rho (\lambda |x,\;y,\;z')-S_{1} \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y',\;z)-S_{2} \rho (\lambda |x,\;y',\;z)+S_{2} \rho (\lambda |x,\;y',\;z)-S_{2} \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y',\;z')-S_{2} \rho (\lambda |x,\;y',\;z')+S_{2} \rho (\lambda |x,\;y',\;z')+S_{2} \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda .\)

\( \le \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z)+ \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z')- \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z)- \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z')+ \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda + \int \vert 1-S_{1} \vert \, [\vert \rho (\lambda |x,\;y,\;z) \vert + \vert \rho (\lambda |x,\;y,\;z') \vert ]\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \,[\vert \rho (\lambda |x,\;y',\;z) \vert + \vert \rho (\lambda |x,\;y',\;z') \vert ]\, \textrm{d}\lambda .\)

=\( T_{1} + T_{2}. \)

where \( T_{1} = \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z)+ \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z')- \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z)- \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z')+ \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda . \) \( = 4+2M_{1}, \)

and \( T_{2} = \int \vert 1-S_{1} \vert \, [\vert \rho (\lambda |x,\;y,\;z) \vert + \vert \rho (\lambda |x,\;y,\;z') \vert ]\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \,[\vert \rho (\lambda |x,\;y',\;z) \vert + \vert \rho (\lambda |x,\;y',\;z') \vert ]\, \textrm{d}\lambda .\)

Case 1 Let us consider \( \lambda \) such that both \( S_{1} \) and \( S_{2} \) becomes positive, then it results \( T_{2} = 0. \)

Case 2 However, if \( \lambda \) is arbitrarily chosen, then \( S_{1} \) and \( S_{2} \) can take +1 or -1 in any occurrence of \( \lambda \). In such a scenario, \( \vert 1-S_{1/2} \vert \) will produce 0 or 2, and consequently, \( T_{2} \) will range between (0,8).

Hence, from the above analysis, an algebraic bound which can saturate Svetlichny inequality is possible, when \( T_{2} \) reduce to 0; therefore, we have

$$\begin{aligned} |S_{\textit{S}}| \le 4+2 M_{1}. \end{aligned}$$
(B2)

However, since the formalism make no distinction between the observers detectors, we can carry out similar set of manipulation, and aiming at Bob and Charlie’s measurement settings, it provides accordingly,

$$\begin{aligned}{} & {} |S_{\textit{S}}| \le 4+2 M_{2}. \end{aligned}$$
(B3)
$$\begin{aligned}{} & {} |S_{\textit{S}}| \le 4+2 M_{3}. \end{aligned}$$
(B4)

Finally, as \( \vert S_{\textit{S}} \vert \) is less than or equal to the right-hand sides of Eqs. (B2), (B3) and (B4), hence it must be bounded above by the minimum of these bounds i.e.,

$$\begin{aligned} |S_{\textit{S}}| \le 4 + 2\min \lbrace M_{1},\, M_{2},\, M_{3} \rbrace . \end{aligned}$$
(B5)

Appendix C: relaxed NS\( _{2} \) inequality

Already we have seen the effect of arbitrary one-sided measurement dependence for Mermin and Svetlichny inequality in last two subsections. Here we have drive modified \( NS_{2} \) inequality, with the ideas form [19, 21]. The \( NS_{2} \) inequality [43] has the following form,

$$\begin{aligned} \vert S_{NS}\vert = |\langle A_0B_0 \rangle +\langle A_0C_0 \rangle +\langle B_0C_1 \rangle -\langle A_1B_1C_0\rangle +\langle A_1B_1C_1\rangle |\le 3. \end{aligned}$$
(C1)

where \(\langle A_0 B_0 C_0 \rangle \) = \(\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\).

\(\langle A_1 B_1 C_1 \rangle \) = \(\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

Therefore the quantity \( S_{NS} \) is

\( S_{NS} =\langle A_0 B_0 \rangle + \langle A_0 C_0 \rangle +\langle B_0 C_1 \rangle - \langle A_1 B_1 C_0 \rangle +\langle A_1 B_1 C_1 \rangle \).

= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\lambda )\;\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\lambda )\;\textrm{d}\lambda +\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\lambda )\;\textrm{d}\lambda +\int {\rho (\lambda \vert x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\lambda )\; \textrm{d}\lambda }\).

= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')-\rho (\lambda |x',\;y',\;z)\;\frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).

Considering the hidden variable \( \lambda \), we set the response function \( \frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )} \) identically as Appendix A. The quantity \( \frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )} \) = \( S_{3} ( \rho (\lambda \vert x',\,y',\,z)-\rho (\lambda \vert x',\,y',\,z') \)).

Hence, \( \vert S_{\textit{NS}}\vert \le \) \(\int \vert {\rho (\lambda |x,\;y)\vert \;\textrm{d}\lambda }+\int \vert {\rho (\lambda |x,\;z)\vert \;d\lambda }\) + \(\int \vert {\rho (\lambda |y,\;z'))\vert \;\textrm{d}\lambda } \) + \(\int \vert {[\rho (\lambda |x',\;y',\;z')-S_{3}\,\rho (\lambda |x',\;y',\;z)]\vert \;\textrm{d}\lambda }\;\;\).

Therefore, the tight bound of NS\( _{2} \) inequality is given by

$$\begin{aligned} |S_{\textit{NS}}|\le 3+M_{3}. \end{aligned}$$
(C2)

However, the terms of \( S_{\textit{NS}} \) are rearranged so that we obtain

\( S_{\textit{NS}} = \int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')-\rho (\lambda |x,\;y',\;z')\;\frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \). + \( \int [\rho (\lambda |x',\;y',\;z)-\rho (\lambda |x,\;y',\;z)\;\frac{u(A_{x},\;\lambda )}{u(A_{x'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) + \( \int [\rho (\lambda |x,\;y',\;z')-\rho (\lambda |x,\;y',\;z)\;\frac{w(C_{z},\;\lambda )}{w(C_{z'},\;\lambda )}]u(A_{x},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \)

Therefore, in a scenario where Alice or Charlie’s measurement settings depend on the hidden variable \( \lambda \), we set \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )} = S_{1} ( \rho (\lambda \vert x,\;y',\;z)-\rho (\lambda \vert x',\;y',\;z) \) and \( \frac{w(C_{z},\;\lambda )}{w(C_{z'},\;\lambda )} = S_{3} ( \rho (\lambda \vert x',\,y',\,z)-\rho (\lambda \vert x',\,y',\,z') \).

Ergo, \( S_{\textit{NS}} \) = \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda +\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')- S_{1}\, \rho (\lambda |x,\;y',\;z')]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).+ \( \int [\rho (\lambda |x,\;y',\;z)-S_{1} \rho (\lambda |x',\;y',\;z)\;u(A_{x},\;\lambda )v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) +\( \int [\rho (\lambda |x,\;y',\;z')- S_{3}\, \rho (\lambda |x,\;y',\;z)]\;u(A_{x},\;\lambda )\;v(B_{y'},\;\lambda )w(C_{z'},\;\lambda )\;\textrm{d}\lambda \)

According as \( S_{1} \) and \( S_{3} \) are the outcomes depends on \( \lambda \), we are inquiring only such bound which can be saturated the NS\( _{2} \) bound for a given \( \lambda \). Hence, the average value reduce to

$$\begin{aligned} |S_{\textit{NS}}|\le 3+ 2M_{1} + M_{3}. \end{aligned}$$
(C3)

Clearly, this formalism makes no difference between the observers detectors (Alice and Bob), we can carry out similar set of manipulation, reversing the treatment of inputs of the parties, we obtain

$$\begin{aligned} |S_{\textit{NS}}|\le 3+ 2M_{2} + M_{3}. \end{aligned}$$
(C4)

According as \( \vert S_{\textit{NS}} \vert \) is less than or equal to the right-hand sides of Eqs. (C2), (C3) and (C4), hence it must be bounded above by the minimum of these bounds, i.e.,

$$\begin{aligned} |S_{\textit{NS}}|\le 3+ \min \lbrace M_{3},\, 2M_{1} + M_{3},\, 2M_{2} + M_{3} \rbrace . \end{aligned}$$
(C5)

Consequently,

$$\begin{aligned} |S_{\textit{NS}}|\le 3+ M_{3}. \end{aligned}$$
(C6)

Appendix D:BI-party relaxation of Mermin inequality

In this section we investigate the effect of arbitrary measurement relaxation [17, 18, 21] in any two-party measurement setting in the same tripartite measurement scenario for Mermin inequality[42].

The Mermin inequality (MI) is

|\(\langle A_1 B_0 C_0\rangle +\langle A_0 B_1 C_0\rangle + \langle A_0 B_0 C_1\rangle -\langle A_1 B_1 C_1 \rangle \)\(\le \) 2.

We use the same notations as used in Sect. (3.1). Here we follow the same formalism that has been used in (A)

Consider, \( S_{M} \) = \(\langle A_1 B_0 C_0 \rangle +\langle A_0 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \)\(\langle A_1 B_1 C_1 \rangle \).

= \(\int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x,\;y',\;z)\;u(A_x,\;\lambda )v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda } - \int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

= \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - \rho (\lambda \vert x',\;y',\;z')\; \frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )}\,\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\; u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\)

+\(\int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y',\;z)+\rho (\lambda \vert x',\;y,\;z) \,\frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )}\,\frac{v(B_y,\;\lambda )}{v(B_{y'},\lambda )}]\; u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\).

Since the outcomes depends on the variables \( \lambda \) in a measurement dependence scenario, henceforth we set, \( \frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )} = S_{1}(\rho ( \lambda \vert x,\,y,\,z') - \rho ( \lambda \vert x',\,y',\,z'))\) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )} = S_{2}(\rho ( \lambda \vert x',\,y,\,z') - \rho ( \lambda \vert x,\,y',\,z')) \)

Hence, \( S_{M} \) = \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - S_{1}\, S_{2}\, \rho (\lambda \vert x',\;y',\;z')]\; u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\)

+\(\int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y',\;z)+ \frac{S_{1}}{S_{2}} \,\rho (\lambda \vert x',\;y,\;z)]\, u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda ) \).

We are inquiring such bounds which can saturate the MI, consequently we have

$$\begin{aligned} \vert S_{\textit{M}}\vert \le 2+ M_{12}. \end{aligned}$$
(D1)

However, since the formalism makes no distinction between the observers detectors, we can carry out similar set of manipulation, reversing the treatment of inputs of the parties, we obtain

$$\begin{aligned}{} & {} \vert S_{\textit{M}}\vert \le 2+ M_{13} \end{aligned}$$
(D2)
$$\begin{aligned}{} & {} \vert S_{\textit{M}}\vert \le 2+ M_{23} \end{aligned}$$
(D3)

Finally, as \( \vert S_{\textit{M}} \vert \) is less than or equal to the right-hand sides of Eqs. (D1), (D2) and (D3), hence it must be bounded above by the minimum of these bounds, i.e.,

$$\begin{aligned} \vert S\vert \le 2+ \min \lbrace M_{12},\; M_{23},\; M_{13} \rbrace . \end{aligned}$$
(D4)

Appendix E:BI-party relaxation of Svetlichny inequality

In this last appendix we have founded the modified Svetlichny inequality, when any two parties have restricted measurement settings in a tripartite non-locality scenario. The required inequality is known as [41]

\( \vert S_{\textit{S}} \vert \) = |\(\langle A_0 B_0 C_0 \rangle - \langle A_1 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle - \langle A_0 B_1 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_1 B_0 C_1 \rangle - \langle A_1 B_1 C_1 \rangle \)| \(\le \) 4.

Consequently, \( S_{\textit{S}} \) = \(\langle A_0 B_0 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle - \langle A_1 B_0 C_1 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_0 B_1 C_1 \rangle - \langle A_1 B_1 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \).

Here, we have used the same formalism as used in one-sided measurement dependence scenario for Svetlichny inequality in (B), and applying the ideas of [19, 21] we obtain the following simplification,

\( S_{\textit{S}} \) = \(\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda } - \int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;B_{y'},\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\)\(\int \rho (\lambda |x,\;y',\;z')\;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;\textrm{d}\lambda - \int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).

= \( \int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y,\;z) - \rho (\lambda \vert x',\;y',\;z) \;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\; u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - \rho (\lambda \vert x',\;y',\;z')\; \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_y,\;\lambda )}] u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda ) \) - \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z')+\rho (\lambda \vert x',\;y,\;z') \;\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}] \;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z)+\rho (\lambda \vert x',\;y,\;z)\; \frac{u(A_x',\;B_{y},\;\lambda )}{u(A_{x},\;B_y',\;\lambda )}]\; u(A_{x},\;B_y',\;\lambda )\;v(C_z,\;\lambda ) \).

Since in a measurement dependence scenario, the outcomes depends on the variables \( \lambda \) henceforth we set \(\frac{u(A_{x'},\,B_{y'},\,\lambda )}{u(A_x,\,B_y,\,\lambda )}\) = \(S_{1}(\rho (\lambda \vert x,\,y,\,z')-\rho (\lambda \vert x',\,y',\,z'))\) and \( \frac{u(A_{x'},\,B_y,\,\lambda )}{u(A_x,\,B_{y'},\,\lambda )} \) = \( S_{2}(\rho ( \lambda \vert x',\,y,\,z) - \rho ( \lambda \vert x,\,y',\,z)) \).

Therefore, \( S_{S} \) = \( \int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y,\;z) - S_{1}\,\rho (\lambda \vert x',\;y',\;z)]\; u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - S_{1}\, \rho (\lambda \vert x',\;y',\;z')] u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda ) \) - \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z')+S_{2}\, \rho (\lambda \vert x',\;y,\;z')] \;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z)+ S_{2}\, \rho (\lambda \vert x',\;y,\;z)]\; u(A_{x},\;B_y',\;\lambda )\;v(C_z,\;\lambda ) \).

We are exploring such bounds which can saturate the SI; consequently we have,

$$\begin{aligned} \vert S_{\textit{S}}\vert \le 4+2 M_{12}. \end{aligned}$$
(E1)

However, since the formalism makes no distinction between the observers detectors, we execute similar set of manipulation, altering the behavior of inputs of the parties, we attain

$$\begin{aligned}{} & {} \vert S_{\textit{S}}\vert \le 4+2 M_{13}. \end{aligned}$$
(E2)
$$\begin{aligned}{} & {} \vert S_{\textit{S}}\vert \le 4+2 M_{23}. \end{aligned}$$
(E3)

Finally, as \( \vert S_{\textit{S}} \vert \) is less than or equal to the right-hand sides of Eqs. (E1), (E2) and (E3), hence it must be upper bounded by the minimum of these items, i.e.,

$$\begin{aligned} \vert S_{\textit{S}}\vert \le 4 + 2\min \lbrace M_{12},\;M_{23},\;M_{13}\rbrace . \end{aligned}$$
(E4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, S.S., Molla, M.K., Kundu, A. et al. Measurement dependence in tripartite non-locality. Quantum Inf Process 23, 297 (2024). https://doi.org/10.1007/s11128-024-04507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04507-6

Keywords