Abstract
The assumption of measurement independence is essential for the derivation of Bell’s inequalities under local, realistic conditions. Violations of these inequalities indicate that the assumption of measurement independence must be relaxed to some extent in order to obtain locally realistic models. The extent to which this assumption needs to be relaxed to achieve violations of certain bipartite Bell inequalities has been studied in Hall (Phys Rev Lett 105:250404, 2010) and Friedman (Phys Rev A 99:012121, 2019). In this paper, we investigate the minimal degree of relaxation required to simulate violations of various known tripartite Bell inequalities. We also provide local deterministic models that achieve these violations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availibility
No datasets were generated or analysed during the current study.
References
Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)
Benaszek, K., Wodkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 10 (2009)
Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)
Shalm, L.K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)
Giustina, M., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)
Hensen, B., et al.: Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis. Sci. Rep. 6, 30289 (2016)
Rosenfeld, W., et al.: Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017)
Abellan, C., et al.: Challenging local realism with human choices. Nature 557, 212 (2018)
Kaiser, D.T.: Conformal transformations with multiple scalar fields. Phys. Rev. D 81, 084044 (2010)
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)
Larsson, J.A.: Loopholes in Bell inequality tests of local realism. J. Phys. A 47, 424003 (2014)
Gachechildze, M., Miklin, N., Chaves, R.: Quantifying causal influences in the presence of a quantum common cause. Phys. Rev. Lett. 124, 230401 (2020)
Li, M.H., et al.: Test of local realism into the past without detection and locality loopholes. Phys. Rev. Lett. 121, 080404 (2018)
Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011)
Koh, D.E., et al.: Effects of reduced measurement independence on Bell-based randomness expansion. Phys. Rev. Lett. 109, 160404 (2012)
Hall, M.J.M.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010)
Hall, M.J.M.: Relaxed Bell inequalities and Kochen–Specker theorems. Phys. Rev. A 84, 022102 (2011)
Banik, M., Gazi, M.R., Das, S., Ray, A., Kunkri, S.: Macroscopic locality with equal bias reproduces with high delity a quantum distribution achieving the Tsirelson’s bound. J. Phys. A Math. Theor. 45, 205301 (2012)
Putz, G., Rosset, D., Barnea, T.J., Liang, Y.C., Gisin, N.: Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality. Phys. Rev. Lett. 113, 190402 (2014)
Friedman, A.S., Guth, H., Hall, M.J.W., Kaiser, D.I., Gallicchio, J.: Relaxed Bell inequalities with arbitrary measurement dependence for each observer. Phys. Rev. A 99, 012121 (2019)
Kofler, J., Paterek, T., Brukner, C.: Experimenter’s freedom in Bell’s theorem and quantum cryptography. Phys. Rev. A 73, 022104 (2006)
Weinstein, S.: Nonlocality without nonlocality. Found. Phys. 39, 921 (2009)
Mukherjee, K., Paul, B., Sarkar, D.: Efficient test to demonstrate genuine three particle nonlocality. J. Phys. A Math. Theor. 48, 465302 (2015)
Hall, M.J.W., Branciard, C.: Measurement-dependence cost for Bell nonlocality: causal versus retrocausal models. Phys. Rev. A 102, 052228 (2020)
Galliccchio, J., Friedman, A.S., Kaiser, D.I.: Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys. Rev. Lett. 112, 110405 (2014)
Aktas, D., Tanzilli, S., Martin, A., Putz, G., Thew, R., Gisin, N.: Demonstration of quantum nonlocality in the presence of measurement dependence. Phys. Rev. Lett. 114, 220404 (2015)
Proietti, M., et al.: Experimental test of local observer independence. Sci. Adv. 5, 9 (2019)
Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)
Pironio, S., Acin, A., Brunner, N., Massar, S., Scrani, V.: Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009)
Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)
Wei, K., et al.: High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030 (2020)
Cerf, N.J., Gisin, N., Massr, S., Popescu, S.: Simulating maximal quantum entanglement without communication. Phys. Rev. Lett. 94, 220403 (2005)
Colbeck, R., Renner, R.: Free randomness can be amplified. Nat. Phys. 8, 450 (2012)
Gallego, R., et al.: Full randomness from arbitrarily deterministic events. Nat. Commun. 4, 2654 (2013)
Liu, Y., et al.: Device-independent quantum random-number generation. Nature 562, 548 (2018)
Bierhorst, P., et al.: Experimentally generated randomness certified by the impossibility of superluminal signals. Nature 556, 223 (2018)
Shen, L., et al.: Randomness extraction from Bell violation with continuous parametric down-conversion. Phys. Rev. Lett. 121, 150402 (2018)
Hall, M.J.W.: Complementary contributions of indeterminism and signaling to quantum correlations. Phys. Rev. A 82, 062117 (2010)
Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91, 187904 (2003)
Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)
Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. 65, 1838 (1990)
Bancal, J.D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. PhLettys. Rev. A 88, 014102 (2013)
Erven, C., et al.: Experimental three-particle quantum nonlocality under strict locality conditions. Nat. Photonics 8, 292–296 (2014)
Pal, K.F., Vertesi, T.: Closing the detection loophole in tripartite Bell tests using the W state. Phys. Rev. A 92, 022103 (2015)
Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114, 090501 (2015)
Ribeiro, J., Murta, G., Wehner, S.: Fully device-independent conference key agreement. Phys. Rev. A 97, 022307 (2018)
Zhu, C., Xu, F., Pei, C.: W-state analyzer and multi-party measurement-device-independent quantum key distribution. Sci. Rep. 5, 17449 (2015)
Zukowski, M., Brukner, C.: Bell’s theorem for general N-Qubit states. Phys. Rev. Lett. 88, 210401 (2002)
Fuchs, C.A., Graaf, J.V.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Tran. Inf. Ther. 45, 1216 (1999)
Mitchell, P., Popescu, S., Roberts, D.: Conditions for the confirmation of three-particle nonlocality. Phys. Rev. A 70, 060101(R) (2002)
Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379 (1994)
Pironio, S., Bancal, J.D., Scarani, V.: Extremal correlations of the tripartite no-signaling polytope. J. Phys. A Math. Theo. 44, 065303 (2011)
Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)
Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)
Collins, D., Gisin, N., Linda, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)
Son, W., Lee, J., Kim, M.S.: Generic Bell inequalities for multipartite arbitrary dimensional systems. Phys. Rev. Lett. 96, 060406 (2006)
Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)
Branciard, C., Rosset, D., Gisin, N., Pironio, S.: Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)
Acknowledgements
S. H. acknowledge M. J. W. Hall for his valuable advice in forming this models. M. K. M. acknowledges G. Kar for fruitful discussions. M. K. M. also acknowledges support from UGC, India, A. K. acknowledges support from CSIR, India and the authors I. Chattopadhyay and D. Sarkar acknowledge the work as part of QuEST initiatives by DST India.
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: relaxed Mermin inequality
In tripartite system with two measurement settings for each party and each measurement has two possible outcomes (as mentioned in Sect. (2.1)) standard tripartite non-locality is detected via the violation of Mermin inequality [42] which has the expression,
Hence, \(S_\textit{M} = \langle A_1 B_0 C_0 \rangle + \langle A_0 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle - \langle A_1 B_1 C_1 \rangle \).
Following the ideas of [19, 21], here in a deterministic no-signaling model, we apply arbitrary measurement dependence in either of the parties measurement settings. In this model, the measurement outcomes are noted as \( u(A_{x},\;\lambda ),\;u(A_{x'},\;\lambda ) \) each taking values from the set \( \lbrace 1, -1\rbrace \) for Alice’s outcome. Identical interpretation follows for \( v(B_{y},\;\lambda ),\;v(B_{y'},\;\lambda ) \) and \( w(C_{z},\;\lambda ),\;w(C_{z'},\;\lambda ) \) accordingly.
Let us assume the three parties perform their spin measurements along the directions \( A_{\hat{m}} \), \( B_{\hat{m}} \) and \( C_{\hat{m}} \), respectively, where the measurement direction for the party X (\( = A, \,B,\,C \)) is denoted as \( X_{\hat{m}}\; \equiv \, (\sin \theta _{X_{\hat{m}}} \cos \phi _{X_{\hat{m}}}, \sin \theta _{X_{\hat{m}}}\sin \phi _{X_{\hat{m}}}, \cos \theta _{X_{\hat{m}}}) \), with \( \theta _{X_{\hat{m}}} \in [0, \pi ] \) and \( \phi _{X_{\hat{m}}} \in [0, 2\pi ] \). The correlation is defined as \(\langle A_1 B_0 C_0 \rangle \) = \(\int {\rho (\lambda |x^{'},\;y,\;z)u(A_{x'},\;\lambda )\; v(B_y,\;\lambda )\; w(C_z,\;\lambda )\;\textrm{d}\lambda }\), and similarly other terms of the expression follows as well. Using these quantities the parameter \(S_{\textit{M}}\) then gives,
\(S_{\textit{M}} = \int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\)+ \(\int \rho (\lambda |x,\;y',\;z)\;u(A_x,\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) + \(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) - \( \int {\rho (\lambda |x',\;y',\;z')\; u(A_{x'},\;\lambda )\; v(B_{y'},\;\lambda )\; w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
We next introduce the measurement dependence factors in \( S_{\textit{M}} \) by using simple mathematical process as follow,
\( S_{\textit{M}} = \int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda } - \int \rho (\lambda |x,\;y,\;z)\;u(A_x,\lambda )\; v(B_y,\;\lambda )\; w(C_z,\;\lambda )\;\textrm{d }\lambda \) + \(\int \rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) + \(\int \rho (\lambda |x,\;y',\;z)\; u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda + \int \rho (\lambda |x,\;y,\;z')\; u(A_x,\;\lambda )v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \) + \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda - \int \rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).
\(= \int {[\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )-\rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )]\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\) + \(\int {[\rho (\lambda |x,\;y,\;z)\;v(B_y,\;\lambda )+\rho (\lambda |x,\;y',\;z)\;v(B_{y'},\;\lambda )]\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda ) -\rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;\lambda )]\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x',\;y,\;z')\;v(B_y,\;\lambda )-\rho (\lambda |x',\;y',\;z')\;v(B_{y'},\;\lambda )]\;u(A_{x'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
\(=\int {[\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z)\;\frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {[\rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z)\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\) -\(\int [\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x,\;y,\;z')\;\frac{u(A_{x},\;\lambda )}{u(A_x',\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda +\int {[\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)
In this scenario, we are considering measurement dependence for Alice or Bob’s measurement settings over the variable \( \lambda \), hence the response functions \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}\) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}\) are function of \( \lambda \). Let us define \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )} \) = \(S_{1}(\rho (\lambda \vert x,\;y,\;z)-\rho (\lambda \vert x',\;y,\;z)) \) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )} \) = \(S_{2}(\rho (\lambda \vert x',\;y,\;z')-\rho (\lambda \vert x',\;y',\;z')) \) for given values of \( \lambda \), where \( S_{i} \)(\(\alpha \)) ( i = 1, 2, 3) is defined below (for simplicity we will use the notation \( S_{1}\) and \( S_{2} \) onward )
Hence, \( S_{M} = \int [\rho (\lambda |x',\;y,\;z)- S_{1} \rho (\lambda |x,\;y,\;z)] \; u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) + \(\int [\rho (\lambda |x,\;y,\;z)+ S_{2}\rho (\lambda |x,\;y',\;z)] \;u(A_{x},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) + \(\int [ \rho (\lambda |x,\;y,\;z')S_{1}- \rho (\lambda |x',\;y,\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda )\, \textrm{d}\lambda \) + \(\int [ \rho (\lambda |x',\;y,\;z')-S_{2} \rho (\lambda |x',\;y',\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda ) \;\textrm{d}\lambda .\)
= \( \int [\rho (\lambda |x',\;y,\;z)-S_{1}\rho (\lambda |x',\;y,\;z)+S_{1}\rho (\lambda |x',\;y,\;z) - S_{1} \rho (\lambda |x,\;y,\;z)] \; u(A_{x'},\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\,\textrm{d}\lambda \) + \(\int [\rho (\lambda |x,\;y,\;z)-S_{2}\rho (\lambda |x,\;y,\;z)+S_{2}\rho (\lambda |x,\;y,\;z)+ S_{2}\rho (\lambda |x,\;y',\;z)] \;u(A_{x},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \)
+ \(\int [ \rho (\lambda |x,\;y,\;z')S_{1}-S_{1}\rho (\lambda |x',\;y,\;z')+S_{1}\rho (\lambda |x',\;y,\;z') - \rho (\lambda |x',\;y,\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda )\, \textrm{d}\lambda \) + \(\int [ \rho (\lambda |x',\;y,\;z')-S_{2}\rho (\lambda |x',\;y,\;z')+S_{2}\rho (\lambda |x',\;y,\;z')-S_{2} \rho (\lambda |x',\;y',\;z')] \;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z',\;\lambda ) \;\textrm{d}\lambda .\)
Hence, \( \vert S_{M} \vert \le \int \vert S_{1} \vert \,\vert \rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z) \vert \,\textrm{d}\lambda + \int \vert S_{1} \vert \,\vert \rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z') \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z) \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z') \vert \,\textrm{d}\lambda + \int \vert 1-S_{1} \vert \rho (\lambda |x',\;y,\;z)\, \textrm{d}\lambda + \int \vert S_{1}-1 \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda +\int \vert 1-S_{2} \vert \rho (\lambda |x,\;y,\;z)\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda .\)
= \( T_{1} + T_{2}.\)
where \( T_{1} = \int \vert S_{1} \vert \,\vert \rho (\lambda |x',\;y,\;z)-\rho (\lambda |x,\;y,\;z) \vert \,\textrm{d}\lambda + \int \vert S_{1} \vert \,\vert \rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z') \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x,\;y,\;z)+\rho (\lambda |x,\;y',\;z) \vert \,\textrm{d}\lambda + \int \vert S_{2} \vert \,\vert \rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z') \vert \,\textrm{d}\lambda , \)
=\( 2 + M_{1} + M_{2} \)
and \( T_{2} = \int \vert 1-S_{1} \vert \rho (\lambda |x',\;y,\;z)\, \textrm{d}\lambda + \int \vert S_{1}-1 \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda +\int \vert 1-S_{2} \vert \rho (\lambda |x,\;y,\;z)\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \rho (\lambda |x',\;y,\;z')\, \textrm{d}\lambda . \)
Case 1 Let us assume \( \lambda \) such that both \( S_{1} \) and \( S_{2} \) becomes positive, then it results \( T_{2} = 0. \)
Case 2 On the contrary, if \( \lambda \) is arbitrarily chosen, then \( S_{1} \) and \( S_{2} \) can take +1 or −1 in any occurrence of \( \lambda \). In such a scenario, \( \vert 1-S_{1/2} \vert \) will produce 0 or 2, and consequently, \( T_{2} \) will range between (0,8).
Hence, from the above analysis, an algebraic bound which can saturate Mermin inequality is possible, when \( T_{2} \) reduce to 0, therefore
Following the same arguments and reordering the terms of \( S_{\textit{M}} \), we have,
Again we can rearrange the terms of \( S_{\textit{M}} \) such that we have the following structure
\( S_{\textit{M}} = \int [\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x',\;y,\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_{z},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda +\int [\rho (\lambda |x',\;y,\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\textrm{d}\lambda \) +\(\int [\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x,\;y',\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_z,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) +\(\int {[\rho (\lambda |x,\;y',\;z')+\rho (\lambda |x,\;y,\;z')\;\frac{v(B_{y},\;\lambda )}{v(B_{y'},\;\lambda )}]\;u(A_{x},\;\lambda )\;v(B_{y'},\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)
Applying the same procedure as used in above paragraph, we have the saturated bound
Reshuffling the terms in above expression, it ensue
\( S_{\textit{M}} \) = \(\int [\rho (\lambda |x',\;y,\;z)-\rho (\lambda |x',\;y,\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_{z},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda \) +\(\int {[\rho (\lambda |x',\;y,\;z')+\rho (\lambda |x,\;y,\;z')\;\frac{u(A_{x},\;\lambda )}{u(A_{x'},\;\lambda )}]\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) +\(\int {[\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x,\;y',\;z')\;\frac{w(C_{z'},\;\lambda )}{w(C_z,\;\lambda )}]\;u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda }\) + \(\int {[\rho (\lambda |x,\;y',\;z')-\rho (\lambda |x',\;y',\;z')\;\frac{u(A_{x'},\;\lambda )}{u(A_{x},\;\lambda )}]\;u(A_{x},\;\lambda )\;v(B_{y'},\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }.\)
Consequently, by the same reasoning as before the modified bound is
Since \( \vert S_{\textit{M}} \vert \) is less than or equal to the right-hand side of Eqs. (A2), (A3), (A4) and (A5), then it must be upper bounded by the minimum of these bounds, i.e.,
Meanwhile, \( \vert S_{\textit{M}}\vert \le 4 \) [52, 53], therefore we arrive at
Clearly, the formalism make no distinction between the observers detectors, we can carry out similar set of manipulation, reversing the arrangement of inputs for the parties, we finally obtain,
Meanwhile, it is worth mentioning that the above bounds may not tight, as we have gathered extra inputs in formulating the modified bounds.
Appendix B: relaxed Svetlichny inequality
Here our motivation is to establish the effect of measurement dependence in one-sided measurement settings for Svetlichny inequality [41], which has the following representation,
Therefore, \( S_{\textit{S}} = \langle A_0 B_0 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle - \langle A_1 B_0 C_1 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_0 B_1 C_1 \rangle - \langle A_1 B_1 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \).
where \(\langle A_0 B_1 C_0 \rangle =\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\), with \(-1\le u(A_x,\;B_{y'},\;\lambda )\le 1;\;-1\le v(C_z,\lambda ) \le 1\),
and similarly we define other terms of \( S_{\textit{S}} \).
Let us assume the three parties perform their spin measurements along the directions \( A_{\hat{m}} \), \( B_{\hat{m}} \) and \( C_{\hat{m}} \), respectively, where the measurement direction for the party X (\( = A, \,B,\,C \)) is denoted as \( X_{\hat{m}}\; \equiv \, (\sin \theta _{X_{\hat{m}}} \cos \phi _{X_{\hat{m}}}, \sin \theta _{X_{\hat{m}}}\sin \phi _{X_{\hat{m}}}, \cos \theta _{X_{\hat{m}}}) \), with \( \theta _{X_{\hat{m}}} \in [0, \pi ] \) and \( \phi _{X_{\hat{m}}} \in [0, 2\pi ] \). Here also following the footprint of [19, 21], we have derived an modified form of Svetlichny inequality in a deterministic no-signaling scenario.
Therefore
\( S_{\textit{S}} =\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;B_y,\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;\textrm{d}\lambda }\) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'}\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda } - \int {\rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\) − \(\int \rho (\lambda |x,\;y',\;z')\;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) - \(\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
= \(\int {u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;[\rho (\lambda |x,\;y,\;z)+\rho (\lambda |x',\;y,\;z)\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\;\textrm{d}\lambda }\) +\(\int u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;[\rho (\lambda |x,\;y,\;z')-\rho (\lambda |x',\;y,\;z')\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\;\textrm{d}\lambda \) +\(\int {u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;[\rho (\lambda |x,\;y',\;z)-\rho (\lambda |x',\;y',\;z)\;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}]\;\textrm{d}\lambda }\) − \(\int {u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;[\rho (\lambda |x,\;y',\;z')+\rho (\lambda |x',\;y',\;z')\;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}]\;\textrm{d}\lambda }\).
Since we have ascribed measurement dependence on Alice measurement settings, hence the response function \( \frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )} \) and \( \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )} \) are function of the hidden variable \( \lambda \).
We set, \( \frac{ u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_y,\;\lambda )} = S_{1}(\rho (\lambda \vert x,\;y,\;z)-\rho (\lambda \vert x',\;y,\;z)) \) and \( \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )} = S_{2}(\rho (\lambda \vert x,\;y'\;z')-\rho (\lambda \vert x',\;y',\;z')) \),.
\( \therefore \) \(|S_{S}|\) \(\le \) \(\int \vert {u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y,\;z)+ S_{1}\;\rho (\lambda |x',\;y,\;z)]\vert \,\textrm{d}\lambda }\) + \(\int \vert {u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y,\;z')- S_{1}\;\rho (\lambda |x',\;y,\;z')]\vert \,\textrm{d}\lambda }\)+\(\int \vert u(A_x,\;B_{y'},\lambda )\;v(C_z,\;\lambda )\vert \,\vert [\rho (\lambda |x,\;y',\;z)-S_{2}\;\rho (\lambda |x',\;y',\;z)]\vert \,\textrm{d}\lambda + \int \vert u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\vert \vert [\rho (\lambda |x,\;y',\;z')+S_{2}\;\rho (\lambda |x',\;y',\;z')]\vert \, \textrm{d}\lambda \).
\( \le \int \vert \rho (\lambda |x,\;y,\;z)-S_{1} \rho (\lambda |x,\;y,\;z)+S_{1} \rho (\lambda |x,\;y,\;z)+S_{1} \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y,\;z')-S_{1} \rho (\lambda |x,\;y,\;z')+S_{1} \rho (\lambda |x,\;y,\;z')-S_{1} \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y',\;z)-S_{2} \rho (\lambda |x,\;y',\;z)+S_{2} \rho (\lambda |x,\;y',\;z)-S_{2} \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert \rho (\lambda |x,\;y',\;z')-S_{2} \rho (\lambda |x,\;y',\;z')+S_{2} \rho (\lambda |x,\;y',\;z')+S_{2} \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda .\)
\( \le \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z)+ \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z')- \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z)- \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z')+ \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda + \int \vert 1-S_{1} \vert \, [\vert \rho (\lambda |x,\;y,\;z) \vert + \vert \rho (\lambda |x,\;y,\;z') \vert ]\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \,[\vert \rho (\lambda |x,\;y',\;z) \vert + \vert \rho (\lambda |x,\;y',\;z') \vert ]\, \textrm{d}\lambda .\)
=\( T_{1} + T_{2}. \)
where \( T_{1} = \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z)+ \rho (\lambda |x',\;y,\;z) \vert \textrm{d}\lambda + \int \vert S_{1} \vert \vert \rho (\lambda |x,\;y,\;z')- \rho (\lambda |x',\;y,\;z') \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z)- \rho (\lambda |x',\;y',\;z) \vert \textrm{d}\lambda + \int \vert S_{2} \vert \vert \rho (\lambda |x,\;y',\;z')+ \rho (\lambda |x',\;y',\;z') \vert \textrm{d}\lambda . \) \( = 4+2M_{1}, \)
and \( T_{2} = \int \vert 1-S_{1} \vert \, [\vert \rho (\lambda |x,\;y,\;z) \vert + \vert \rho (\lambda |x,\;y,\;z') \vert ]\, \textrm{d}\lambda + \int \vert 1-S_{2} \vert \,[\vert \rho (\lambda |x,\;y',\;z) \vert + \vert \rho (\lambda |x,\;y',\;z') \vert ]\, \textrm{d}\lambda .\)
Case 1 Let us consider \( \lambda \) such that both \( S_{1} \) and \( S_{2} \) becomes positive, then it results \( T_{2} = 0. \)
Case 2 However, if \( \lambda \) is arbitrarily chosen, then \( S_{1} \) and \( S_{2} \) can take +1 or -1 in any occurrence of \( \lambda \). In such a scenario, \( \vert 1-S_{1/2} \vert \) will produce 0 or 2, and consequently, \( T_{2} \) will range between (0,8).
Hence, from the above analysis, an algebraic bound which can saturate Svetlichny inequality is possible, when \( T_{2} \) reduce to 0; therefore, we have
However, since the formalism make no distinction between the observers detectors, we can carry out similar set of manipulation, and aiming at Bob and Charlie’s measurement settings, it provides accordingly,
Finally, as \( \vert S_{\textit{S}} \vert \) is less than or equal to the right-hand sides of Eqs. (B2), (B3) and (B4), hence it must be bounded above by the minimum of these bounds i.e.,
Appendix C: relaxed NS\( _{2} \) inequality
Already we have seen the effect of arbitrary one-sided measurement dependence for Mermin and Svetlichny inequality in last two subsections. Here we have drive modified \( NS_{2} \) inequality, with the ideas form [19, 21]. The \( NS_{2} \) inequality [43] has the following form,
where \(\langle A_0 B_0 C_0 \rangle \) = \(\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }\).
\(\langle A_1 B_1 C_1 \rangle \) = \(\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
Therefore the quantity \( S_{NS} \) is
\( S_{NS} =\langle A_0 B_0 \rangle + \langle A_0 C_0 \rangle +\langle B_0 C_1 \rangle - \langle A_1 B_1 C_0 \rangle +\langle A_1 B_1 C_1 \rangle \).
= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\lambda )\;\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\lambda )\;\textrm{d}\lambda +\int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \) - \(\int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\lambda )\;\textrm{d}\lambda +\int {\rho (\lambda \vert x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\lambda )\; \textrm{d}\lambda }\).
= \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')-\rho (\lambda |x',\;y',\;z)\;\frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).
Considering the hidden variable \( \lambda \), we set the response function \( \frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )} \) identically as Appendix A. The quantity \( \frac{w(C_z,\;\lambda )}{w(C_{z'},\;\lambda )} \) = \( S_{3} ( \rho (\lambda \vert x',\,y',\,z)-\rho (\lambda \vert x',\,y',\,z') \)).
Hence, \( \vert S_{\textit{NS}}\vert \le \) \(\int \vert {\rho (\lambda |x,\;y)\vert \;\textrm{d}\lambda }+\int \vert {\rho (\lambda |x,\;z)\vert \;d\lambda }\) + \(\int \vert {\rho (\lambda |y,\;z'))\vert \;\textrm{d}\lambda } \) + \(\int \vert {[\rho (\lambda |x',\;y',\;z')-S_{3}\,\rho (\lambda |x',\;y',\;z)]\vert \;\textrm{d}\lambda }\;\;\).
Therefore, the tight bound of NS\( _{2} \) inequality is given by
However, the terms of \( S_{\textit{NS}} \) are rearranged so that we obtain
\( S_{\textit{NS}} = \int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')-\rho (\lambda |x,\;y',\;z')\;\frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \). + \( \int [\rho (\lambda |x',\;y',\;z)-\rho (\lambda |x,\;y',\;z)\;\frac{u(A_{x},\;\lambda )}{u(A_{x'},\;\lambda )}]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) + \( \int [\rho (\lambda |x,\;y',\;z')-\rho (\lambda |x,\;y',\;z)\;\frac{w(C_{z},\;\lambda )}{w(C_{z'},\;\lambda )}]u(A_{x},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \)
Therefore, in a scenario where Alice or Charlie’s measurement settings depend on the hidden variable \( \lambda \), we set \( \frac{u(A_x,\;\lambda )}{u(A_{x'},\;\lambda )} = S_{1} ( \rho (\lambda \vert x,\;y',\;z)-\rho (\lambda \vert x',\;y',\;z) \) and \( \frac{w(C_{z},\;\lambda )}{w(C_{z'},\;\lambda )} = S_{3} ( \rho (\lambda \vert x',\,y',\,z)-\rho (\lambda \vert x',\,y',\,z') \).
Ergo, \( S_{\textit{NS}} \) = \(\int {\rho (\lambda |x,\;y)\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x,\;z)\;u(A_x,\;\lambda )\;w(C_z,\;\lambda )\textrm{d}\lambda +\int {\rho (\lambda |y,\;z')\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) + \(\int [\rho (\lambda |x',\;y',\;z')- S_{1}\, \rho (\lambda |x,\;y',\;z')]u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda \).+ \( \int [\rho (\lambda |x,\;y',\;z)-S_{1} \rho (\lambda |x',\;y',\;z)\;u(A_{x},\;\lambda )v(B_{y'},\;\lambda )\;w(C_{z},\;\lambda )\;\textrm{d}\lambda \) +\( \int [\rho (\lambda |x,\;y',\;z')- S_{3}\, \rho (\lambda |x,\;y',\;z)]\;u(A_{x},\;\lambda )\;v(B_{y'},\;\lambda )w(C_{z'},\;\lambda )\;\textrm{d}\lambda \)
According as \( S_{1} \) and \( S_{3} \) are the outcomes depends on \( \lambda \), we are inquiring only such bound which can be saturated the NS\( _{2} \) bound for a given \( \lambda \). Hence, the average value reduce to
Clearly, this formalism makes no difference between the observers detectors (Alice and Bob), we can carry out similar set of manipulation, reversing the treatment of inputs of the parties, we obtain
According as \( \vert S_{\textit{NS}} \vert \) is less than or equal to the right-hand sides of Eqs. (C2), (C3) and (C4), hence it must be bounded above by the minimum of these bounds, i.e.,
Consequently,
Appendix D:BI-party relaxation of Mermin inequality
In this section we investigate the effect of arbitrary measurement relaxation [17, 18, 21] in any two-party measurement setting in the same tripartite measurement scenario for Mermin inequality[42].
The Mermin inequality (MI) is
|\(\langle A_1 B_0 C_0\rangle +\langle A_0 B_1 C_0\rangle + \langle A_0 B_0 C_1\rangle -\langle A_1 B_1 C_1 \rangle \)| \(\le \) 2.
We use the same notations as used in Sect. (3.1). Here we follow the same formalism that has been used in (A)
Consider, \( S_{M} \) = \(\langle A_1 B_0 C_0 \rangle +\langle A_0 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \) − \(\langle A_1 B_1 C_1 \rangle \).
= \(\int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;\lambda )\;v(B_y,\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda }+\int \rho (\lambda |x,\;y',\;z)\;u(A_x,\;\lambda )v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda } - \int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
= \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - \rho (\lambda \vert x',\;y',\;z')\; \frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )}\,\frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )}]\; u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\)
+\(\int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y',\;z)+\rho (\lambda \vert x',\;y,\;z) \,\frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )}\,\frac{v(B_y,\;\lambda )}{v(B_{y'},\lambda )}]\; u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda )\).
Since the outcomes depends on the variables \( \lambda \) in a measurement dependence scenario, henceforth we set, \( \frac{u(A_{x'},\;\lambda )}{u(A_x,\;\lambda )} = S_{1}(\rho ( \lambda \vert x,\,y,\,z') - \rho ( \lambda \vert x',\,y',\,z'))\) and \( \frac{v(B_{y'},\;\lambda )}{v(B_y,\;\lambda )} = S_{2}(\rho ( \lambda \vert x',\,y,\,z') - \rho ( \lambda \vert x,\,y',\,z')) \)
Hence, \( S_{M} \) = \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - S_{1}\, S_{2}\, \rho (\lambda \vert x',\;y',\;z')]\; u(A_x,\;\lambda )\;v(B_y,\;\lambda )\;w(C_{z'},\;\lambda )\)
+\(\int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y',\;z)+ \frac{S_{1}}{S_{2}} \,\rho (\lambda \vert x',\;y,\;z)]\, u(A_x,\;\lambda )\;v(B_{y'},\;\lambda )\;w(C_z,\;\lambda ) \).
We are inquiring such bounds which can saturate the MI, consequently we have
However, since the formalism makes no distinction between the observers detectors, we can carry out similar set of manipulation, reversing the treatment of inputs of the parties, we obtain
Finally, as \( \vert S_{\textit{M}} \vert \) is less than or equal to the right-hand sides of Eqs. (D1), (D2) and (D3), hence it must be bounded above by the minimum of these bounds, i.e.,
Appendix E:BI-party relaxation of Svetlichny inequality
In this last appendix we have founded the modified Svetlichny inequality, when any two parties have restricted measurement settings in a tripartite non-locality scenario. The required inequality is known as [41]
\( \vert S_{\textit{S}} \vert \) = |\(\langle A_0 B_0 C_0 \rangle - \langle A_1 B_1 C_0 \rangle +\langle A_0 B_0 C_1 \rangle - \langle A_0 B_1 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_1 B_0 C_1 \rangle - \langle A_1 B_1 C_1 \rangle \)| \(\le \) 4.
Consequently, \( S_{\textit{S}} \) = \(\langle A_0 B_0 C_0 \rangle +\langle A_0 B_0 C_1 \rangle \)+\(\langle A_1 B_0 C_0 \rangle - \langle A_1 B_0 C_1 \rangle +\langle A_0 B_1 C_0 \rangle - \langle A_0 B_1 C_1 \rangle - \langle A_1 B_1 C_0 \rangle - \langle A_1 B_1 C_1 \rangle \).
Here, we have used the same formalism as used in one-sided measurement dependence scenario for Svetlichny inequality in (B), and applying the ideas of [19, 21] we obtain the following simplification,
\( S_{\textit{S}} \) = \(\int {\rho (\lambda |x,\;y,\;z)\;u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda } - \int \rho (\lambda |x',\;y',\;z)\;u(A_{x'},\;B_{y'},\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x,\;y,\;z')\;u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\) − \(\int \rho (\lambda |x,\;y',\;z')\;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda \) +\(\int {\rho (\lambda |x',\;y,\;z)\;u(A_{x'},\;B_y,\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }+\int {\rho (\lambda |x,\;y',\;z)\;u(A_x,\;B_{y'},\;\lambda )\;v(C_z,\;\lambda )\;\textrm{d}\lambda }\) - \(\int \rho (\lambda |x',\;y,\;z')\;u(A_{x'},\;B_y,\;\lambda )\;v(C_{z'},\lambda )\;\textrm{d}\lambda - \int {\rho (\lambda |x',\;y',\;z')\;u(A_{x'},\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda )\;\textrm{d}\lambda }\).
= \( \int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y,\;z) - \rho (\lambda \vert x',\;y',\;z) \;\frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_y,\;\lambda )}]\; u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - \rho (\lambda \vert x',\;y',\;z')\; \frac{u(A_{x'},\;B_{y'},\;\lambda )}{u(A_x,\;B_y,\;\lambda )}] u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda ) \) - \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z')+\rho (\lambda \vert x',\;y,\;z') \;\frac{u(A_{x'},\;B_y,\;\lambda )}{u(A_x,\;B_{y'},\;\lambda )}] \;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z)+\rho (\lambda \vert x',\;y,\;z)\; \frac{u(A_x',\;B_{y},\;\lambda )}{u(A_{x},\;B_y',\;\lambda )}]\; u(A_{x},\;B_y',\;\lambda )\;v(C_z,\;\lambda ) \).
Since in a measurement dependence scenario, the outcomes depends on the variables \( \lambda \) henceforth we set \(\frac{u(A_{x'},\,B_{y'},\,\lambda )}{u(A_x,\,B_y,\,\lambda )}\) = \(S_{1}(\rho (\lambda \vert x,\,y,\,z')-\rho (\lambda \vert x',\,y',\,z'))\) and \( \frac{u(A_{x'},\,B_y,\,\lambda )}{u(A_x,\,B_{y'},\,\lambda )} \) = \( S_{2}(\rho ( \lambda \vert x',\,y,\,z) - \rho ( \lambda \vert x,\,y',\,z)) \).
Therefore, \( S_{S} \) = \( \int \textrm{d}\lambda \;[\rho (\lambda \vert x,\;y,\;z) - S_{1}\,\rho (\lambda \vert x',\;y',\;z)]\; u(A_x,\;B_y,\;\lambda )\;v(C_z,\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y,\;z') - S_{1}\, \rho (\lambda \vert x',\;y',\;z')] u(A_x,\;B_y,\;\lambda )\;v(C_{z'},\;\lambda ) \) - \( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z')+S_{2}\, \rho (\lambda \vert x',\;y,\;z')] \;u(A_x,\;B_{y'},\;\lambda )\;v(C_{z'},\;\lambda ) \) +\( \int \textrm{d}\lambda \; [\rho (\lambda \vert x,\;y',\;z)+ S_{2}\, \rho (\lambda \vert x',\;y,\;z)]\; u(A_{x},\;B_y',\;\lambda )\;v(C_z,\;\lambda ) \).
We are exploring such bounds which can saturate the SI; consequently we have,
However, since the formalism makes no distinction between the observers detectors, we execute similar set of manipulation, altering the behavior of inputs of the parties, we attain
Finally, as \( \vert S_{\textit{S}} \vert \) is less than or equal to the right-hand sides of Eqs. (E1), (E2) and (E3), hence it must be upper bounded by the minimum of these items, i.e.,
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hossain, S.S., Molla, M.K., Kundu, A. et al. Measurement dependence in tripartite non-locality. Quantum Inf Process 23, 297 (2024). https://doi.org/10.1007/s11128-024-04507-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04507-6