Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Queuing network models for panel sizing in oncology

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Motivated by practices and issues at the British Columbia Cancer Agency (BCCA), we develop queuing network models to determine the appropriate number of patients to be managed by a single physician. This is often referred to as a physician’s panel size. The key features that distinguish our study of oncology practices from other panel size models are high patient turnover rates, multiple patient and appointment types, and follow-up care. The paper develops stationary and non-stationary queuing network models corresponding to stabilized and developing practices, respectively. These models are used to determine new patient arrival rates that ensure practices operate within certain performance thresholds. Data from the BCCA are used to calibrate and illustrate the implications of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balasubramanian, H., Banerjee, R., Denton, B., Naessens, J., Stahl, J.: Improving clinical access and continuity through physician panel redesign. J. Gen. Int. Med. 25(10), 1109–1115 (2010)

    Article  Google Scholar 

  2. Balasubramanian, H., Denton, B., Lin, M.: Handbook of Healthcare Delivery Systems: Managing Physician Panels in Primary Care, Chap. 10, pp. 1–23. CRC Press, Taylor and Francis, New York (2010)

    Google Scholar 

  3. Bitran, G.R., Morabito, R.: Open queueing networks: optimization and performance evaluation models for discrete manufacturing systems. Prod. Oper. Manag. 5(2), 163–193 (1996)

    Article  Google Scholar 

  4. Boucherie, R.J., Taylor, P.: Transient product from distributions in queueing networks. Discrete Event Dyn. Syst. 3(4), 375–396 (1993)

    Article  Google Scholar 

  5. Cella, D.F., Tulsky, D.S., Gray, G., Sarafian, B., Linn, E., Bonomi, A., Silberman, M., Yellen, S.B., Winicour, P., Brannon, J.: The functional assessment of cancer therapy scale: development and validation of the general measure. J. Clin. Oncol. 11(3), 570–579 (1993)

    Article  Google Scholar 

  6. Green, L.V., Savin, S.: Reducing delays for medical appointments: a queueing approach. Oper. Res. 56(6), 1526–1538 (2008)

    Article  Google Scholar 

  7. Green, L.V., Savin, S., Murray, M.: Providing timely access to care: what is the right patient panel size? Jt. Comm. J. Qual. Patient Saf. 33(4), 211–218 (2007)

    Article  Google Scholar 

  8. Hall, R.W.: Patient Flow: Reducing Delay in Healthcare Delivery, 1st edn. Springer, New York (2006)

    Book  Google Scholar 

  9. Kimura, T.: Approximations for multi-server queues: system interpolations. Queueing Syst. 17(3–4), 347–382 (1994)

    Article  Google Scholar 

  10. Ma, C., Puterman, M., Saure, A., Taylor, M., Tyldesley, S.: Capacity planning and appointment scheduling for new patient oncology consults. Health Care Manag. Sci. 19, 1–15 (2015)

    Google Scholar 

  11. Massey, W.A., Whitt, W.: Networks of infinite-server queues with nonstationary Poisson input. Queueing Syst. 13(1), 183–250 (1993)

    Article  Google Scholar 

  12. Murray, M., Berwick, D.M.: Advanced access: reducing waiting and delays in primary care. J. Am. Med. Assoc. 289(8), 1035–1040 (2003)

    Article  Google Scholar 

  13. Murray, M., Davies, M., Boushon, B.: Panel size: how many patients can one doctor manage? Fam. Pract. Manag. 14(4), 44 (2007)

    Google Scholar 

  14. Ozen, A., Balasubramanian, H.: The impact of case mix on timely access to appointments in a primary care group practice. Health Care Manag. Sci. 16(2), 101–118 (2013)

    Article  Google Scholar 

  15. Poznanski, D.: Prostate cancer follow-up practices of genitourinary radiation oncologists at the BC cancer agency Vancouver centre. Master’s thesis, University of British Columbia (2010)

  16. Sakasegawa, H.: An approximation formula \(l_q\approx \alpha \rho ^{\beta }/(1-\rho )\). Ann. Inst. Stat. Math. 29(1), 67–75 (1977)

    Article  Google Scholar 

  17. Whitt, W.: Approximations for the GI/G/\(m\) queue. Prod. Oper. Manag. 2(2), 114–161 (1993)

    Article  Google Scholar 

  18. Wu, K., McGinnis, L.: Performance evaluation for general queueing networks in manufacturing systems: characterizing the trade-off between queue time and utilization. Eur. J. Oper. Res. 221(2), 328–339 (2012)

    Article  Google Scholar 

  19. van Eeden, K., Moeke, D., Bekker, R.: Care on demand in nursing homes: a queueing theoretic approach. Health Care Manag. Sci. 19(3), 227–240 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge staff from the CIHR Team in Operations Research for Improved Cancer Care at the BC Cancer Agency for their support of this project and their assistance with data collection and Daniel Ding for his valuable feedback on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Vanberkel.

Appendix: Aggregation for the multi-class open queueing network

Appendix: Aggregation for the multi-class open queueing network

Here we describe the technique used to aggregate the parameters in the multi-class open queueing network in Sect. 5. See [3] for more details on the method.

Let \(J'=\{\hbox {np},\hbox {ap},\hbox {ip}\}\) be the set of queues in the network and let \(j\in J'\). We start by computing the first and second moments of the aggregate service time (\(D_\mathrm{ap}^+\)) for patients in the active patient queue. This amounts to a weighted average of the service time of each patient type as follows:

$$\begin{aligned} \mathbb {E}\left[ D_\mathrm{ap}^+\right]= & {} \frac{1}{\sum \nolimits _{i=1}^c\varLambda _{\mathrm{ap},i}}\displaystyle \sum \limits _{i=1}^c \varLambda _{\mathrm{ap},i}\mathbb {E}[D_{\mathrm{ap},i}], \\ V\left[ \left( D_\mathrm{ap}^+\right) \right]= & {} \frac{1}{\sum \nolimits _{i=1}^c\varLambda _{\mathrm{ap},i}}\displaystyle \sum \limits _{i=1}^c \varLambda _{\mathrm{ap},i} V[(D_{\mathrm{ap},i})], \end{aligned}$$

where V[X] is the variance of random variable X and \(\varLambda _{j,i}\) is the arrival rate of patient type i to queue \(j\in J'\).

From these aggregate values, the squared coefficient of variance for the service time in the active patient queue (\(\hbox {SCV}_{\mathrm{ap,s}}\), note that the subscript ap indicates the active patient queue and the subscript s indicates service) can be obtained as follows:

$$\begin{aligned} \hbox {SCV}_\mathrm{ap,s}= & {} \frac{1}{\varLambda _\mathrm{ap}^+ \left( \mathbb {E}[D_\mathrm{ap}^+]\right) ^2} \nonumber \\&\times \displaystyle \sum _{i=1}^c \left( \varLambda _{\mathrm{ap},i} \mathbb {E}[D_{\mathrm{ap},i}]^2 \left( \left( \frac{\sqrt{V[D_{\mathrm{ap},i}]}}{(\mathbb {E}[D_{\mathrm{ap},i}]) }\right) ^2 +1 \right) -1\right) . \end{aligned}$$
(12)

The aggregate mean arrival rate and the aggregate routing probabilities are, respectively, \(\varLambda _j^+=\sum _{i=1}^c\varLambda _{j,i}\), \(j\in J'\), and \(r_\mathrm{ap,np}^+=1\), \(r_\mathrm{ap,ip}^+=1/\varLambda _\mathrm{ap}^+\sum _{i=1}^c\varLambda _{\mathrm{ap},i} r_{(\mathrm{ap},i),\mathrm{ip}}\), \(r_\mathrm{ip,ap}^+=1/\varLambda _\mathrm{ip}^+\sum _{i=1}^c \sum _{k=1}^c \varLambda _{\mathrm{ip},i} r_{\mathrm{ip},(\mathrm{ap},k)}\). Since all new patients go to queue np, the external (new) patient arrival rate \(\varLambda _0^+=\varLambda \) and \(r_{0,j}^+=\mathbf{1}\{j=\hbox {np}\}\).

At this point, the c patient classes are aggregated into a single class and we now consider the network to be a single class open queueing network with the aggregate parameters described above. To analyze the single class open queueing network, we next determine the SCV for the interarrival times to each queue (\(\hbox {SCV}_{j,a}\)) as follows:

$$\begin{aligned} \hbox {SCV}_{\mathrm{np},a}= & {} \alpha _\mathrm{np}, \nonumber \\ \hbox {SCV}_{\mathrm{ap},a}= & {} \alpha _\mathrm{ap}+\hbox {SCV}_{\mathrm{np},a}\beta _\mathrm{np,ap}+ \hbox {SCV}_{\mathrm{ip},a}\beta _\mathrm{ip,ap}, \nonumber \\ \hbox {SCV}_{\mathrm{ip},a}= & {} \alpha _\mathrm{ip}+\hbox {SCV}_{\mathrm{ap},a}\beta _\mathrm{ap,ip}, \end{aligned}$$
(13)

where \(\alpha _j\) and \(\beta _{i,j}\) are constants depending on the input data:

$$\begin{aligned} \alpha _j= & {} 1+w_j\left( I_j\left( \frac{\sqrt{V[\varLambda ]}}{\varLambda } \right) ^2-1\right) \\&+ w_j\left( \displaystyle \sum _{k\in J'}\frac{\varLambda _k^+ r_{k,j}^+}{\varLambda _j^+}\left( \left( 1-r_{k,j}^+\right) +r_{k,j}^+\rho _k^2x_k \right) \right) , \\ \beta _{k,j}= & {} w_j r_{k,j}^+\frac{\varLambda _k^+ r_{k,j}^+}{\varLambda _j^+}\left( 1-\rho ^2_k\right) ,\quad k\in J', \end{aligned}$$

where \(I_\mathrm{np}=1, I_\mathrm{ap}=I_\mathrm{ip}=0\) and

$$\begin{aligned} w_{j}= & {} \left( 1+4(1-\rho _{j})^2(v_{j}-1)\right) ^{-1}, \\ v_{j}= & {} \left( \displaystyle \sum _{k\in J' \cup \{0\}} \left( \frac{\varLambda _k^+ r_{k,j}^+}{\varLambda _j^+} \right) ^2 \right) ^{-1}, \\ \rho _{j}= & {} \frac{\varLambda _{j}^+\mathbb {E}[D_{j}^+]}{m_{j}}, \\ x_{j}= & {} 1+m_{j}^{-0.5}(\max [\hbox {SCV}_{j,s},0.2]-1),\quad j\in J'. \end{aligned}$$

Since \(m_\mathrm{np}\) and \(m_\mathrm{ip}\) are large, then \(x_\mathrm{np}\approx 1,x_\mathrm{ip}\approx 1,\) and \(\rho _\mathrm{np}<1, \rho _\mathrm{ip}<1\).

Using the SCV for the arrival process (13) and the SCV for the service time (12), the expected waiting time in the active patient queue is approximated as follows (see [16]):

$$\begin{aligned} \mathbb {E}[W]\approx \frac{\hbox {SCV}_{\mathrm{ap},a}+\hbox {SCV}_{\mathrm{ap},s}}{2} \frac{\rho _\mathrm{ap}^{\left( \sqrt{2(m_\mathrm{ap}+1)}-1 \right) }}{m_\mathrm{ap}(1-\rho _\mathrm{ap})}\mathbb {E}\left[ D_\mathrm{ap}^+\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanberkel, P.T., Litvak, N., Puterman, M.L. et al. Queuing network models for panel sizing in oncology. Queueing Syst 90, 291–306 (2018). https://doi.org/10.1007/s11134-018-9571-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-018-9571-4

Keywords

Mathematics Subject Classification