Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An approximate fractional Gaussian noise model with \(\mathcal {O}(n)\) computational cost

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Fractional Gaussian noise (fGn) is a stationary time series model with long-memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length n using a likelihood-based approach is \({{\mathcal {O}}}(n^{2})\), exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to \({{\mathcal {O}}}(n^{3})\). This paper presents an approximate fGn model of \({{\mathcal {O}}}(n)\) computational cost, both with direct and indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive (AR) processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four AR components. Specifically, the given approximate fGn model is incorporated within the class of latent Gaussian models in which Bayesian inference is obtained using the methodology of integrated nested Laplace approximation. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econ. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Benmehdi, S., Makarava, N., Menhamidouche, N., Holschneider, M.: Bayesian estimation of the self-similarity exponent of the Nile River fluctuation. Nonlinear Process. Geophys. 18, 441–446 (2011)

    Article  Google Scholar 

  • Beran, J.: Statistics for Long-Memory Processes, 1st edn. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  • Beran, J., Terrin, N.: Testing for a change of the long-memory parameter. Biometrika 83, 627–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Beran, J., Schützner, M., Ghosh, S.: From short to long memory: aggregation and estimation. Comput. Stat. Data Anal. 54, 2432–2442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Beran, J., Feng, Y., Ghosh, S., Kulik, R.: Long-Memory Processes—Probabilistic Properties and Statistical Methods. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  • Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1980)

    MATH  Google Scholar 

  • Chan, N.H., Palma, W.: Estimation of long-memory time series models: a survey of different likelihood-based methods. Adv. Econ. 20, 89–121 (2006)

    MATH  Google Scholar 

  • Cont, R.: Long range dependence in financial markets. In: Lévy-Véhel, J., Button, E. (eds.) Fractals in Engineering, pp. 159–180. Springer, London (2005)

  • Doukhan, P., Oppenheim, G., Taqqu, M.: Theory and Applications of Long-Range Dependence. Birkhauser, Boston (2003)

    MATH  Google Scholar 

  • Durbin, J.: The fitting of time-series models. Rev. Inst. Int. Stat. 28, 233–244 (1960)

    Article  MATH  Google Scholar 

  • Eltahir, E.A.B.: El Niño and the natural variability in the flow of the Nile River. Water Resour. Res. 32, 131–137 (1996)

    Article  Google Scholar 

  • Franzke, C.: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Clim. 25, 4172–4182 (2012)

    Article  Google Scholar 

  • Fredriksen, H.B., Rypdal, M.: Long-range persistence in global surface temperatures explained by linear multibox energy balance models. J. Clim. 30, 7157–7168 (2017)

    Article  Google Scholar 

  • Gil-Alana, L.A.: An application of fractional integration to a long temperature series. Int. J. Climatol. 23, 1699–1710 (2003)

    Article  Google Scholar 

  • Golub, G., Loan, C.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Granger, C.W.J.: Long memory relationships and the aggregation of dynamic models. J. Econ. 14, 227–238 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Graves, T., Gramacy, R.B., Franzke, C.L.E., Watkins, N.W.: Efficient Bayesian inference for natural time series using ARFIMA processes. Nonlinear Process. Geophys. 22, 679–700 (2015)

    Article  Google Scholar 

  • Graves, T., Gramacy, R., Watkins, N., Franzke, C.: A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA, 1951–1980. Entropy 19, 1–21 (2017)

    Article  Google Scholar 

  • Haldrup, N., Valdés, J.E.V.: Long memory, fractional integration and cross-sectional aggregation. J. Econ. 199, 1–11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking, J.R.M.: Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 20, 1898–1908 (1984)

    Article  Google Scholar 

  • Hurst, H.E.: Long-term storage capacities of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  • Jensen, A.N., Nielsen, M.Ø.: A fast fractional difference algorithm. J. Time Ser. Anal. 35, 428–436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Knorr-Held, L., Rue, H.: On block updating in Markov random field models for disease mapping. Scand. J. Stat. 29, 597–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Kondrashov, D., Feliks, Y., Ghil, M.: Oscillatory modes of the extended Nile River records (a.d. 622–1922). Geophy. Res. Lett. 32, 1–4 (2005)

    Article  Google Scholar 

  • Koutsoyiannis, D.: The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol. Sci. J. 47, 573–595 (2002)

    Article  Google Scholar 

  • Levinson, N.: The Wiener (root mean square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1947)

    Article  MathSciNet  Google Scholar 

  • Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion). J. R. Stat. Soc. B 73, 423–498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R.: Computer experiments with fractional Gaussian noises. Water Resour. Res. 5, 228–267 (1969a)

    Article  Google Scholar 

  • Mandelbrot, B.B., Wallis, J.R.: Global dependence in geophysical records. Water Resour. Res. 5, 321–340 (1969b)

    Article  Google Scholar 

  • Manley, G.: The mean temperature of central England, 1698–1952. Q. J. R. Meteorol. Soc. 79, 242–261 (1953)

    Article  Google Scholar 

  • Manley, G.: Central England temperatures: monthly means 1659–1973. Q. J. R. Meteorol. Soc. 100, 389–405 (1974)

    Article  Google Scholar 

  • Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., Bullmore, E.: Fractional Gaussian noise, functional MRI and Alzheimer’s disease. NeuroImage 25, 141–158 (2005)

    Article  Google Scholar 

  • McLeod, A.I., Hipel, K.W.: Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon. Water Resour. Res. 14, 491–508 (1978)

    Article  Google Scholar 

  • McLeod, A.I., Yu, H., Krougly, Z.L.: Algorithms for linear time series analysis: With R Package. J. Stat. Softw. 23, 1–26 (2007)

    Article  Google Scholar 

  • Molz, F.J., Liu, H.H., Szulga, J.: Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: a review, presentation of fundamental properties, and extensions. Water Resour. Res. 33, 2273–2286 (1997)

    Article  Google Scholar 

  • Palma, W., Chan, N.H.: Estimation and forecasting of long-memory processes with missing values. J. Forecast. 16, 395–410 (1997)

  • Parker, D.E., Horton, E.B.: Uncertainties in the central England temperature series since 1878 and some changes to the maximum and minimum series. Int. J. Climatol. 25, 1173–1188 (2005)

    Article  Google Scholar 

  • Parker, D.E., Legg, T.P., Folland, C.K.: A new daily central England temperature series, 1772–1991. Int. J. Climatol. 12, 317–342 (1992)

    Article  Google Scholar 

  • Purczyński, J., Wlodarski, P.: On fast generation of fractional Gaussian noise. Comput. Stat. Data Anal. 50, 2537–2551 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Rue, H.: Fast sampling of Gaussian Markov random fields. J. R. Stat. Soc. B 63, 325–338 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, London (2005)

    Book  MATH  Google Scholar 

  • Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. B 71, 319–392 (2009)

    Article  MATH  Google Scholar 

  • Rypdal, M., Rypdal, K.: Long-memory effects in linear response models of Earth’s temperature and implications for future global warming. J. Clim. 27, 5240–5258 (2014)

    Article  Google Scholar 

  • Rypdal, M., Fredriksen, H.B., Myrvoll-Nilsen, E., Rypdal, K., Sørbye, S.H.: Emergent scale invariance and climate sensitivity. Under Rev. Clim. (2018). https://doi.org/10.20944/preprints201810.0542.v1

  • Simpson, D., Rue, H., Riebler, A., Martins, T.G., Sørbye, S.H.: Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 232, 1–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Sørbye, S.H., Rue, H.: Scaling intrinsic Gaussian Markov random field priors in spatial modelling. Spat. Stat. 8, 39–51 (2014)

    Article  MathSciNet  Google Scholar 

  • Sørbye, S.H., Rue, H.: Fractional Gaussian noise: Prior specification and model comparison. Environmetrics (2017). https://doi.org/10.1002/env.2457

  • Sørbye, S.H., Illian, J.B., Simpson, D.P., Burslem, D., Rue, H.: Careful prior specification avoids incautious inference for log-gaussian cox point processes. J. R. Stat. Soc. C (2018). https://doi.org/10.1111/rssc.12321

  • Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 3, 785–798 (1995)

    Article  MATH  Google Scholar 

  • Toussoun, O.: M’emoire sur l’histoire du Nil. M’emoires a l’Institut d’Egypte 18, 366–404 (1925)

    Google Scholar 

  • Trench, W.F.: An algorithm for the inversion of finite Toeplitz matrices. J. Soc. Ind. Appl. Math. 12, 515–522 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Veitch, D., Gorst-Rasmussen, A., Gefferth, A.: Why FARIMA models are brittle. Fractals (2013). https://doi.org/10.1142/S0218348X13500126

  • Willinger, W., Paxson, V., Taqqu, M.S.: Self-similarity and heavy tails: structural modeling of network traffic. In: Adler, R.J., Feldman, R.E., Taqqu, M.S. (eds.) A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pp. 27–53. Birkhauser, Boston (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrunn H. Sørbye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sørbye, S.H., Myrvoll-Nilsen, E. & Rue, H. An approximate fractional Gaussian noise model with \(\mathcal {O}(n)\) computational cost. Stat Comput 29, 821–833 (2019). https://doi.org/10.1007/s11222-018-9843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-018-9843-1

Keywords