Abstract
While several Mobile Sink (MS)-based data gathering methods have been proposed for Wireless Sensor Networks, most of them are less adaptive to changes in network topology, and the planned MS trajectory cannot be refined to accommodate node failures. Hence, a KD-Tree-based scheme (KDT) is proposed, which is an adaptive and robust algorithm that reduces network energy consumption and data gathering delay. In contrast to many existing algorithms, the number of Rendezvous Points (RPs) are assigned dynamically by prioritizing the nodes’ coverage. Overlapping coverage of RPs is minimized, while guaranteeing 100% coverage of nodes. KDT is adaptive to network topology changes, and the planned MS trajectory can be refined to accommodate node failures. The shortest MS path is found using Ant Colony Optimization. Simulation results show that KDT requires approximately half the number of RPs and about 13% reduction in MS travel time compared to existing schemes.
Similar content being viewed by others
References
Al Aghbari Z, Khedr AM, Osamy W, Arif I, Agrawal DP (2020) Routing in wireless sensor networks using optimization techniques: a survey. Wirel Pers Commun 111(4):2407–2434
Abu Safia A, Al Aghbari Z, Kamel I (2016) Phenomena detection in mobile wireless sensor networks. J Netw Syst Manag 24(1):92–115
Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330
Osamy W, Khedr AM, Aziz A, El-Sawy AA (2018) Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access 6:77372–77387
Osamy W, El-sawy AA, Khedr AM (2019) Satc: a simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networks. Wirel Pers Commun 108(2):921–938
Khedr AM (2015) Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms 8(4):910–928
Ahmed N, Kanhere SS, Jha S (2005) The holes problem in wireless sensor networks: a survey. ACM SIGMOBILE Mob Comput Commun Rev 9(2):4–18
Omar DM, Khedr AM, Agrawal DP (2017) Optimized clustering protocol for balancing energy in wireless sensor networks. Int J Commun Netw Inf Secur 9(3):367–375
Mehto A, Tapaswi S, Pattanaik K (2020) A review on rendezvous based data acquisition methods in wireless sensor networks with mobile sink. Wirel Netw 26(4):2639–2663
Al Aghbari Z, Kamel I, Elbaroni W (2013) Energy-efficient distributed wireless sensor network scheme for cluster detection. Int J Parallel, Emerg Distrib Syst 28(1):1–28
Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw (TOMS) 3(3):209–226
Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517
Miao Y, Sun Z, Wang N, Cao Y, Cruickshank H (2016) Time efficient data collection with mobile sink and Ymimo technique in wireless sensor networks. IEEE Syst J 12(1):639–647
Tang J, Guo S, Yang Y (2015) Delivery latency minimization in wireless sensor networks with mobile sink. In: 2015 IEEE International Conference on Communications (ICC). IEEE, pp 6481–6486
Raj PP, Al Khedr AM, Aghbari Z (2020) Data gathering via mobile sink in WSNs using game theory and enhanced ant colony optimization. Wirel Netw 26(4):2983–2998
Alsaafin A, Al Khedr AM, Aghbari Z (2018) Distributed trajectory design for data gathering using mobile sink in wireless sensor networks. AEU-Int J Electron Commun 96:1–12
Majma MR, Almassi S, Shokrzadeh H (2016) Sgdd: self-managed grid-based data dissemination protocol for mobile sink in wireless sensor network. Int J Commun Syst 29(5):959–976
Wang Z, Ding H, Li B, Bao L, Yang Z (2020) An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks. IEEE Access 8:133577–133596
Park J, Kim S, Youn J, Ahn S, Cho S (2020) Iterative sensor clustering and mobile sink trajectory optimization for wireless sensor network with nonuniform density. Wire Commun Mobile Comput
Wang J, Gao Y, Liu W, Sangaiah AK, Kim H-J (2019) An intelligent data gathering schema with data fusion supported for mobile sink in wireless sensor networks. Int J Distrib Sens Netw 15(3):1550147719839581
Han Z, Shi T, Lv X, Jia X, Wang Z, Zhou D (2019) Data gathering maximisation for wireless sensor networks with a mobile sink. Int J Ad Hoc Ubiquitous Comput 32(4):224–235
Gao Y, Wang J, Wu W, Sangaiah AK, Lim S-J (2019) Travel route planning with optimal coverage in difficult wireless sensor network environment. Sensors 19(8):1838
Kumar P, Amgoth T, Annavarapu CSR (2018) Aco-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Appl Soft Comput 69:528–540
Donta PK, Amgoth T, Annavarapu CSR (2021) An extended ACO-based mobile sink path determination in wireless sensor networks. J Ambient Intell Human Comput 12(10):8991–9006
Wu C, Liu Y, Wu F, Fan W, Tang B (2017) Graph-based data gathering scheme in WSNs with a mobility-constrained mobile sink. IEEE Access 5:19463–19477
He X, Fu X, Yang Y (2019) Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access 7:176204–176217
Wen W, Zhao S, Shang C, Chang C-Y (2018) EAPC: energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sens J 18(2):890–901
Anzola J, Pascual J, Gonzalez Tarazona G, Crespo R (2018) A clustering WSN routing protocol based on KD tree algorithm. Sensors 18(9):2899
Dash D, Kumar N, Ray PP, Kumar N (2020) Reducing data gathering delay for energy efficient wireless data collection by jointly optimizing path and speed of Mobile Sink. IEEE Syst J 15(3):3173–3184
Khalifa B, Al Aghbari Z, Khedr AM, Abawajy JH (2017) Coverage hole repair in WSNs using cascaded neighbor intervention. IEEE Sens J 17(21):7209–7216
Htun AM, Maw MS, Sasase I (2014) Reduced complexity on mobile sensor deployment and coverage hole healing by using adaptive threshold distance in hybrid wireless sensor networks. In: IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), vol 2014. IEEE, pp 1547–1552
Mini S, Udgata SK, Sabat SL (2014) Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sens J 14(3):636–644
Sengupta S, Das S, Nasir M, Panigrahi BK (2013) Multi-objective node deployment in WSNs: in search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Eng Appl Artif Intell 26(1):405–416
Dorigo M, Maniezzo V, Colorni A et al (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41
Merry B, Gain J, Marais P (2013) Accelerating kd-tree searches for all k-nearest neighbours. Tech. Rep., University of Cape Town
Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Al Aghbari, Z., Khedr, A.M., Khalifa, B. et al. An adaptive coverage aware data gathering scheme using KD-tree and ACO for WSNs with mobile sink. J Supercomput 78, 13530–13553 (2022). https://doi.org/10.1007/s11227-022-04407-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-022-04407-5