Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Recursive IDFT Scheme for Complex-valued Signals in Tap-selective Maximum-likelihood Channel Estimation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents several efficient, recursive inverse discrete Fourier transform (IDFT) schemes for complex-valued input data in tap-selective maximum-likelihood channel estimation; the results of their implementation are also presented. The proposed schemes employ only real-valued arithmetic, which reduces the number of required real multiplication operations in comparison with conventional IDFT approaches; however, the number of real additions increases significantly due to the sliding window scheme. The results show that the schemes can reduce the computational complexity and enhance flexibility when only several subsets of the IDFT output bins are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Hwang, J.-K., & Chung, R.-L. (2007). Low-complexity algorithm for tap-selective maximum likelihood estimation over sparse multipath channels. In Proc. Int. Conf. on IEEE GLOBECOM 2007 (pp. 2857–2862). Washington.

  2. Hwang, J.-K., & Li, Y.-P. (2008). Modular design and implementation of FPGA-based tap-selective maximum-likelihood channel estimator. In Proc. of the IEEE ICCSC 2008 (pp. 658–662).

  3. Felder, M. D. Mason, J. C. & Evans, B. L. (1998). Efficient dual-tone multifrequency detection using the nonuniform discrete Fourier transform. IEEE Signal Processing Letters, 5, 160–163. doi:10.1109/97.700916.

    Article  Google Scholar 

  4. Gay, S. L., Hartung, J., & Smith, G. L. (1989). Algorithms for multi-channel DTMF detection for the WE DSP32 family. In Proc. of International Conference on Acoustics, Speech, and Signal Processing (ICASSP-89) (Vol. 2, pp. 1134–1137).

  5. Banks, K. (2002). The Goertzel algorithm. Embedded Syst. Programming Mag (pp. 34–42).

  6. Jacobsen, E. & Lyons, R. (2003). The sliding DFT. IEEE Signal Processing Magazine, 20(2), 74–80. doi:10.1109/MSP.2003.1184347.

    Article  Google Scholar 

  7. Liu, K. J. R. (1993). Novel parallel architectures for short-time Fourier transform. IEEE Transactions on Circuits and Systems Part II. Analog and Digital Signal Processing, 40(12), 786–790. doi:10.1109/82.260243.

    Article  Google Scholar 

  8. Jacobsen, E. & Lyons, R. (2004). An update to the sliding DFT. IEEE Signal Processing Magazine, 21(1), 110–111. doi:10.1109/MSP.2004.1516381.

    Article  Google Scholar 

  9. Goertzel, G. (1958). An algorithm for the evaluation of finite trigonometric series. American Mathematical Monthly, 65, 34–35. doi:10.2307/2310304.

    Article  MATH  MathSciNet  Google Scholar 

  10. Van, L.-D., & Yang, C.-C. (2004). High-speed area-efficient recursive DFT/IDFT architectures. In Proc. of the 2004 International Symposium on Circuits and Systems (ISCAS ‘04) (Vol. 3, pp. III-357–360).

  11. Proakis, J. & Manolakis, D. (1996). Digital signal processing-principles, algorithms, and applications (3rd ed.). Upper Saddle River: Prentice Hall. ch. 5–6.

    Google Scholar 

  12. Meyer-Baese, U. (2001). Digital signal processing with field programmable gate arrays (pp. 232–233). Berlin: Springer-Verlag.

    Google Scholar 

  13. Wenzler, A., & Luder, E. (1995). New structures for complex multipliers and their noise analysis. In Proc. of the IEEE International Symposium on Circuit Systems, ISCAS-1995 (pp. 1431–1435). Seattle.

  14. Madisetti, V. & Williams, D. (1999). Digital signal processing handbook. Boca Raton: CRC Press LLC. ch. 7.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JK., Li, YP. Efficient Recursive IDFT Scheme for Complex-valued Signals in Tap-selective Maximum-likelihood Channel Estimation. J Sign Process Syst Sign Image Video Technol 60, 71–80 (2010). https://doi.org/10.1007/s11265-009-0404-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0404-x

Keywords