Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advanced SLM scheme based on discrete forest optimization algorithm for PAPR minimization in UFMC waveform

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Inherent multicarrier transmission mechanism of the universal filtered multicarrier (UFMC) waveform engenders the problem of high peak-to-average power ratio (PAPR). Since it is impossible for a nonlinear high power amplifier (HPA) to execute a distortionless amplification unless the PAPR of transmission signal is below an acceptable level, eliminating the aforementioned PAPR drawback in UFMC waveform is so critical for smooth communication. With this in mind, we developed a new selective mapping (SLM) scheme based on discrete forest optimization algorithm (DFOA) for the UFMC waveform. The related scheme was created by embedding the DFOA into the conventional SLM with the intention of optimizing the values of phase factors by which the phase rotation process is carried out in frequency domain to reduce the PAPR of eventual time domain signal attained from the SLM output. It is confirmed via the simulations that, remarkable PAPR improvements are achieved through the DFOA-SLM scheme in the UFMC signal thanks to the DFOA-supported search for the optimal sequence of phase factors instead of classical random search strategy inherent in the conventional SLM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fuente, A., Leal, R. P., & Armada, A. G. (2016). New technologies and trends for next generation mobile broadcasting services. IEEE Communications Magazine, 54(11), 217–223.

    Article  Google Scholar 

  2. Tsai, C.-W., Lai, C.-F., & Vasilakos, A. V. (2014). Future internet of things: open issues and challenges. Wireless Networks, 20, 2201–2217.

    Article  Google Scholar 

  3. Akyildiz, I. F., Nie, S., Lin, S.-C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106, 17–48.

    Article  Google Scholar 

  4. Kansal, L., Sharma, V., & Singh, J. (2017). BER assessment of FFT-OFDM against WHT-OFDM over different fading channel. Wireless Networks, 23, 2189–2196.

    Article  Google Scholar 

  5. Cimini, L. J. (1985). Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, 33(7), 665–675.

    Article  Google Scholar 

  6. Vakilian, V., Wild, T., Schaich, F., Brink, S. T., & Frigon, J. F. (2013). Universal-filtered multi-carrier technique for wireless systems beyond LTE. 2013 IEEE Globecom Workshops (GCWkshps) (pp. 9–13). GA, USA: Atlanta.

    Google Scholar 

  7. Li, Y., Tian, B., Yi, K., & Yu, Q. (2017). A novel hybrid CFO estimation scheme for UFMC-based systems. IEEE Communications Letters, 21(6), 1337–1340.

    Article  Google Scholar 

  8. Wu, M., Dang, J., Zhang, Z., & Wu, L. (2018). An advanced receiver for universal filtered multicarrier. IEEE Transactions on Vehicular Technology, 67(8), 7779–7783.

    Article  Google Scholar 

  9. Wen, J., Hua, J., Lu, W., Zhang, Y., & Wang, D. (2018). Design of waveform shaping filter in the UFMC system. IEEE Access, 6, 32300–32309.

    Article  Google Scholar 

  10. Duan, S., Yu, X., & Wang, R. (2017). Performance analysis on filter parameters and sub-bands distribution of universal filtered multicarrier. Wireless Personal Communications, 95, 2359–2375.

    Article  Google Scholar 

  11. Ryu, H. G., Park, J. S., & Park, J. S. (2004). Threshold IBO of HPA in the predistorted OFDM communication system. IEEE Transactions on Broadcasting, 50(4), 425–428.

    Article  Google Scholar 

  12. Paredes, M. C. P., Grijalva, F., Rodrigez, J. C., & Sarzosa, F. (2017). Performance analysis of the effects caused by HPA models on an OFDM signal with high PAPR. IEEE Second Ecuador Technical Chapters Meeting (ETCM) (pp. 1–5). Ecuador: Salinas.

    Google Scholar 

  13. Liu, K., Ge, Y., & Liu, Y. (2019). An efficient piecewise nonlinear companding transform for PAPR reduction in UFMC systems. 2019 IEEE/CIC International Conference on Communications in China (ICCC) (pp. 730–734). China: Changchun.

    Chapter  Google Scholar 

  14. Fathy, S. A., Ibrahim, M. N. A., Elagooz, S. S., & El-Hennawy, H. M. (2019). Efficient SLM technique for PAPR reduction in UFMC systems. 36th National Radio Science Conference (NRSC 2019) (pp. 118–125). Egypt: Port Said.

    Chapter  Google Scholar 

  15. Tipan, M. N., Caceres, J., Jimenez, M. N., Cano, I. N., & Arevalo, G. (2017). Comparison of clipping techniques for PAPR reduction in UFMC systems. 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM) (pp. 1–4). Guatemala: Guatemala City.

    Google Scholar 

  16. Mabrouk, M. B., Chafii, M., Louet, Y., & Bader, F. (2017). A precoding-based PAPR reduction technique for UF-OFDM and filtered-OFDM modulations in 5G systems. 23th European Wireless Conference (pp. 285–290). Germany: Dresden.

    Google Scholar 

  17. Taşpınar, N., & Şimşir, Ş. (2019). PAPR reduction based on partial transmit sequence technique in UFMC waveform. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). Portugal: Coimbra.

    Google Scholar 

  18. Baig, I., Farooq, U., Hasan, N. U., Zghaibeh, M., Sajid, A., & Rana, U. M. (2019). A low PAPR DHT precoding based UFMC scheme for 5G communication systems. 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 425–428). Paris: France.

    Chapter  Google Scholar 

  19. Rong, W., Cai, J., & Yu, X. (2017). Low-complexity PTS PAPR reduction scheme for UFMC systems. Cluster Computing, 20, 3427–3440.

    Article  Google Scholar 

  20. Wang, C. L., & Quyang, Y. (2005). Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems. IEEE Transactions on Signal Processing, 53(12), 4652–4660.

    Article  MathSciNet  Google Scholar 

  21. Bauml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 32(22), 2056–2057.

    Article  Google Scholar 

  22. Ghaemi, M., & Derakhshi, M. R. F. (2016). Feature selection using forest optimization algorithm. Pattern Recognition, 60, 121–129.

    Article  Google Scholar 

  23. Mirjalili, S., Mirjalili, S. M., & Yang, X. S. (2014). Binary bat algorithm. Neural Computing and Applications, 25, 663–681.

    Article  Google Scholar 

  24. Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

    Google Scholar 

  25. Hussain, A., Manikanthan, S. V., Padmapriya, T., & Nagalingam, M. (2020). Genetic algorithm based adaptive offloading for improving IoT device communication efficiency. Wireless Networks, 26, 2329–2338.

    Article  Google Scholar 

  26. Ghaemi, M., & Derakhshi, M. R. F. (2014). Forest optimization algorithm. Expert Systems with Applications, 41(15), 6676–6687.

    Article  Google Scholar 

  27. Zhu, X., Pan, W., Li, H., & Tang, Y. (2013). Simplified approach to optimized iterative clipping and filtering for PAPR reduction of OFDM signals. IEEE Transactions on Communications, 61(5), 1891–1901.

    Article  Google Scholar 

  28. Olfat, E., & Bengtsson, M. (2017). Joint channel and clipping level estimation for OFDM in IoT-based networks. IEEE Transactions on Signal Processing, 65(18), 4902–4911.

    Article  MathSciNet  Google Scholar 

  29. Selesnick, I. W., & Burrus, C. S. (1999). Fast convolution and filtering. In V. K. Madissetti & D. B. Williams (Eds.), Digital signal processing handbook (pp. 179–199). Boca Raton: CRC Press LLC.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Scientific Research Projects Coordinating Unit of Erciyes University [Grant Number: FDK-2018-8463].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şakir Şimşir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşpınar, N., Şimşir, Ş. Advanced SLM scheme based on discrete forest optimization algorithm for PAPR minimization in UFMC waveform. Wireless Netw 27, 1353–1368 (2021). https://doi.org/10.1007/s11276-020-02515-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02515-9

Keywords