Abstract
Chemical Reaction Optimization (CRO) is a recently established population based metaheuristic for optimization problems inspired by the natural behavior of chemical reactions . Optimization is a way of ensuring the usability of resources and related technologies in the best possible way. We experience optimization problems in our daily lives while some problems are so hard that we can, at best, approximate the best solutions with heuristic or metaheuristic methods. This search (CRO) algorithm inherits several features from other metaheuristics like Simulated Annealing and Genetic Algorithm. After its invention, it was successfully applied to various optimization problems that were solved by other metaheuristic algorithms . The robustness of CRO algorithm was proved when the comparisons with other evolutionary algorithms like Particle Swarm Optimization, Genetic Algorithm, Simulated Annealing, Ant Colony Optimization, Tabu Search, Bee Colony Optimization etc. showed the superior results. As a result, the CRO algorithm has been started to use for solving problems in different fields of optimization . In this paper, we have reviewed the CRO based algorithms with respect to some well-known optimization problems. A brief description of variants of CRO algorithm will help the readers to understand the diversified quality of CRO algorithm. For different problems where CRO algorithms were used, the study on parameters and the experimental results are included to show the robustness of CRO algorithm.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373
Shadbolt N (2004) Nature-inspired computing. IEEE Intell Syst 19(1):2–3
Garey MR (1979) Computers and intractability: a guide to the theory of np-completeness. Revista Da Escola De Enfermagem Da USP 44(2):340
Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, Osaka
Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22(1):3–18
Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186
Eiben AE, Smith JE et al (2003) Introduction to evolutionary computing, vol 53. Springer, Berlin
Al-Salami NM (2009) Evolutionary algorithm definition. Am J Eng Appl Sci 2(4):789–795
Holland J, Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston
Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Elsevier, Amsterdam. https://doi.org/10.1016/B978-1-55860-595-4.X5000-1
Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization—artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1(4):28–39
Brooks SP, Morgan BJ (1995) Optimization using simulated annealing. The Statistician 44:241–257
Lam AY, Li VO (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans Evolut Comput 14(3):381–399
Xu J, Lam AY, Li VO (2010) Parallel chemical reaction optimization for the quadratic assignment problem. In: World congress in computer science, computer engineering, and applied computing, Worldcomp 2010
Xu J, Lam AY, Li VO (2011) Chemical reaction optimization for task scheduling in grid computing. IEEE Trans Parallel Distrib Syst 22(10):1624–1631
Lam AY, Li VO (2010) Chemical reaction optimization for cognitive radio spectrum allocation. In: Global telecommunications conference (GLOBECOM 2010), 2010 IEEE. IEEE, pp 1–5
Truong TK, Li K, Xu Y (2013) Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem. Appl Soft Comput 13(4):1774–1780
Truong TK, Li K, Xu Y, Ouyang A, Tang X (2013) An artificial chemical reaction optimization algorithm for multiple-choice knapsack problem. In: Proceedings on the international conference on artificial intelligence (ICAI). The steering committee of the world congress in computer science, computer engineering and applied computing (WorldComp), p 1
Xu J, Lam AY, Li VO (2011) Stock portfolio selection using chemical reaction optimization. In: Proceedings of international conference on operations research and financial engineering (ICORFE 2011), pp 458–463
Ngambusabongsopa R, Li Z, Eldesouky E (2015) A hybrid mutation chemical reaction optimization algorithm for global numerical optimization. Math Probl Eng 2015, Article ID 375902. https://doi.org/10.1155/2015/375902
Islam MR, Asha ZT, Ahmed R (2015) Longest common subsequence using chemical reaction optimization. In: 2015 2nd international conference on electrical information and communication technology (EICT). IEEE, pp 29–33
Saifullah CK, Islam MR (2016) Solving shortest common supersequence problem using chemical reaction optimization. In: 2016 5th international conference on informatics, electronics and vision (ICIEV). IEEE, pp 50–55
Eldos T, Kanan A, Nazih W, Khatatbih A (2015) Adapting the chemical reaction optimization algorithm to the printed circuit board drilling problem. In: International conference on computer, computational and mathematical sciences. Zürich, Switzerland
Xu Y, Li K, He L, Truong TK (2013) A dag scheduling scheme on heterogeneous computing systems using double molecular structure-based chemical reaction optimization. J Parallel Distrib Comput 73(9):1306–1322
Nayak J, Naik B, Behera HS, Abraham A (2017) Hybrid chemical reaction based metaheuristic with fuzzy c-means algorithm for optimal cluster analysis. Expert Syst Appl 79:282–295
Bensedira B, Layeb A, Bouzoubia S, Habbas Z (2016) CRO-CARP: a chemical reaction optimization for capacitated arc routing problem. In: 2016 8th international conference on modelling, identification and control (ICMIC). IEEE, pp 757–762
Sahu SR, Behera HS (2016) A hybrid CRO-based FLANN for financial stock market forecasting. Int J Data Anal Tech Strateg 8(3):261–279
Szeto W, Liu Y, Ho SC (2016) Chemical reaction optimization for solving a static bike repositioning problem. Transp Res Part D Transp Environ 47:104–135
Dam TL, Li K, Fournier-Viger P (2017) Chemical reaction optimization with unified tabu search for the vehicle routing problem. Soft Comput 21(21):6421–6433
Mahmud MR, Pritom RM, Islam MR (2017) Optimization of collaborative transportation scheduling in supply chain management with TPL using chemical reaction optimization. In: 2017 20th international conference of computer and information technology (ICCIT). IEEE, pp 1–6
Lam AY, Li VO (2012) Chemical reaction optimization: a tutorial. Memet Comput 4(1):3–17
Bechikh S, Chaabani A, Said LB (2015) An efficient chemical reaction optimization algorithm for multiobjective optimization. IEEE Trans Cybern 45(10):2051–2064
Chaabani A, Bechikh S, Said LB (2018) A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization. Appl Intell 48(9):2847–2872
Deb K (2014) Multi-objective optimization. In: Search methodologies. Springer, pp 403–449
Bechikh S, Said LB, Ghédira K (2011) Negotiating decision makers’ reference points for group preference-based evolutionary multi-objective optimization. In: 2011 11th international conference on hybrid intelligent systems (HIS). IEEE, pp 377–382
Lam AY, Li VO, Xu J (2013) On the convergence of chemical reaction optimization for combinatorial optimization. IEEE Trans Evolut Comput 17(5):605–620
Islam MR, Saifullah CK, Asha ZT, Ahamed R (2018) Chemical reaction optimization for solving longest common subsequence problem for multiple string. Soft Comput. https://doi.org/10.1007/s00500-018-3200-3
Kabir R, Islam R (2018) Chemical reaction optimization for RNA structure prediction. Appl Intell 49(2):352–375
Guggenheim EA (1985) Thermodynamics—an advanced treatment for chemists and physicists. Amsterdam, North-Holland, p 414
Yu JJQ, Lam AYS, Li VOK (2012) Real-coded chemical reaction optimization with different perturbation functions. In: 2012 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
Dong H, He J, Huang H, Hou W (2007) Evolutionary programming using a mixed mutation strategy. Inf Sci 177(1):312–327
Nguyen TT, Li Z, Zhang S, Truong TK (2014) A hybrid algorithm based on particle swarm and chemical reaction optimization. Expert Syst Appl 41(5):2134–2143
Li H, Wang L, Hei X (2016) Decomposition-based chemical reaction optimization (CRO) and an extended CRO algorithms for multiobjective optimization. J Comput Sci 17:174–204
Nayak S, Misra B, Behera H (2017) Artificial chemical reaction optimization of neural networks for efficient prediction of stock market indices. Ain Shams Eng J 8:371–390
Saifullah CK, Islam MR (2016) Chemical reaction optimization for solving shortest common supersequence problem. Comput Biol Chem 64:82–93
Szeto WY, Wang Y, Wong SC (2014) The chemical reaction optimization approach to solving the environmentally sustainable network design problem. Comput-Aided Civ Infrastruct Eng 29(2):140–158
Yu JJQ, Lam AYS, Li VOK (2011) Evolutionary artificial neural network based on chemical reaction optimization. In: 2011 IEEE congress on evolutionary computation (CEC). IEEE, pp 2083–2090
Yu JJQ, Lam AYS, Li VOK (2014) Chemical reaction optimization for the set covering problem. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE, pp 512–519
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Islam, M.R., Saifullah, C.M.K. & Mahmud, M.R. Chemical reaction optimization: survey on variants. Evol. Intel. 12, 395–420 (2019). https://doi.org/10.1007/s12065-019-00246-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12065-019-00246-1