Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clustering social networks using ant colony optimization

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Several e-marketing applications rely on the ability to understand the structure of social networks. Social networks can be represented as graphs with customers as nodes and their interactions as edges. Most real world social networks are known to contain extremely dense subgraphs (also called as communities) which often provide critical insights about the emergent properties of the social network. The communities, in most cases, correspond to the various segments in a social system. Such an observation led researchers to propose algorithms to detect communities in networks. A modularity measure representing the quality of a network division has been proposed which on maximization yields good partitions. The modularity maximization is a strongly NP-complete problem which renders mathematical programming based optimization intractable for large problem sizes. Many heuristics based on simulated annealing, genetic algorithms and extremal optimization have been used to maximize modularity but have lead to suboptimal solutions. In this paper, we propose an ant colony optimization (ACO) based approach to detect communities. To the best of our knowledge, this is the first application of ACO to community detection. We demonstrate that ACO based approach results in a significant improvement in modularity values as compared to existing heuristics in the literature. The reasons for this improvement when tested on real and synthetic data sets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barabási AL, Albert R (1999) Emergenge of scaling in random networks. Science 286(5439):509

    Article  Google Scholar 

  • Blum C, Dorigo M (2004) The hyper-cube framework for ant colony optimization. IEEE Trans Actions Syst Man Cybern 34(2):1161

    Article  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    Google Scholar 

  • Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M, Nikoloski Z, Wagner D (2006) http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0608255

  • Bullnheimer B, Hartl R, Strauss C (1997) A new rank based version of the ant system—a computational study. Technical report. University of Vienna, Institute of Management Science

  • Clauset A, Newman M, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  Google Scholar 

  • Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005:P09008

  • Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53. doi:10.1109/4235.585892

    Article  Google Scholar 

  • Dorigo M, Stützle T (2004) Ant colony optimization. The MIT Press, Cambridge

    Book  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26:29

    Article  Google Scholar 

  • Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72:027104

    Article  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75. doi:10.1016/j.physrep.2009.11.002

    Article  Google Scholar 

  • Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36. doi:10.1073/pnas.0605965104. http://www.pnas.org/cgi/content/abstract/104/1/36

    Google Scholar 

  • Gleiser PM, Danon L (2003) Community structure in jazz. Adv Complex Syst 6:565

    Article  Google Scholar 

  • Goldberg D, Segrest P (1987) Finite Markov chain analysis of genetic algorithms. In: Proceedings of the second international conference on genetic algorithms, pp 1–8

  • Guimerá R, Amaral LAN (2005) Cartography of complex networks: modules and universal roles. J Stat Mech Theory Exp 2005:P02001.

  • Guimerá R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103. doi:10.1103/PhysRevE.68.065103

    Article  Google Scholar 

  • Guimerà R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70(2):025101. doi:10.1103/PhysRevE.70.025101

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651

    Article  Google Scholar 

  • Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 29:291

    Google Scholar 

  • Korosec P, Silc J, Robic B (2004) Solving the mesh-partitioning problem with an ant-colony algorithm*1. Parallel Comput 30(5–6):785

    Article  Google Scholar 

  • Lehmann S, Hansen LK (2007) Deterministic modularity optimization. Eur Phys J B 60:83. doi:10.1140/epjb/e2007-00313-2

    Article  Google Scholar 

  • Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution. ACM Trans Knowl Discov Data 1:2

    Google Scholar 

  • Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput 7(1):76

    Article  Google Scholar 

  • Liu X, Li D, Wang S, Tao Z (2007) Effective Algorithm for Detecting Community Structure in Complex Networks Based on GA and Clustering. Computational Science—ICCS 2007, Springer, Berlin, vol 4488, pp 657–664

  • McPherson L, Smith-Lovin M, Cook J (2001) Birds of a feather: homophiliy in social networks. Annu Rev Sociol 27:15

    Article  Google Scholar 

  • Meila M (2007) Comparing clusterings—an information based distance. J Multivar Anal 98(5):873. doi:10.1016/j.jmva.2006.11.013 http://www.sciencedirect.com/science/article/B6WK9-4MMWHFV-1/2/6e6d4d7733be150b256bcd50a651c241

    Google Scholar 

  • Merz P, Freisleben B (2002) Greedy and local search heuristics for unconstrained binary quadratic programming. J Heuristics 8:197

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824

    Article  Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69:066133

    Article  Google Scholar 

  • Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577. doi:10.1073/pnas.0601602103. http://www.pnas.org/cgi/content/abstract/103/23/8577

    Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in newtorks. Phys Rev E 69:026113

    Article  Google Scholar 

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:036106. doi:10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  • Ravasz E, Barabási AL (2003) Hierarchical organization in complex networks. Phys Rev E 67(2):026112. doi:10.1103/PhysRevE.67.026112

    Article  Google Scholar 

  • Reichardt J, Bornholdt S (2007) Clustering of sparse data via network communities—a prototype study of a large online market. J Stat Mech 2007:06016

  • Ruan J, Zhang W (2007) An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: Seventh IEEE international conference on data mining, pp 643–648

  • Schafer JB, Konstan JA, Reidl J (2001) Data mining and knowledge discovery. Kluwer, Dordrecht, p 115

  • Stutzle T, Hoos H (1997) MAX–MIN ant system and local search for the traveling salesman problem. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp 309–314. doi:10.1109/ICEC.1997.592327

  • Tasgin M, Herdagdelen A, Bingol H (2007) Community detection in complex networks using genetic algorithms, p 6. http://www.citebase.org/abstract?id=oai:arXiv.org:0711.0491

  • Traud AL, Kelsic ED, Mucha PJ, Porter MA (2008) Community structure in online collegiate social networks, vol 809, pp 1–38. ArXiv e-prints

  • Watts D, Strogatz S (1998) Collective dynamics of ’small-world’ networks. Nature 393:440

    Article  Google Scholar 

  • Zachary W (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452

    Google Scholar 

  • Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based search for combinatorial optimization: a critical survey. Ann Oper Res 131(1):373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supreet Reddy Mandala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandala, S.R., Kumara, S.R.T., Rao, C.R. et al. Clustering social networks using ant colony optimization. Oper Res Int J 13, 47–65 (2013). https://doi.org/10.1007/s12351-011-0115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-011-0115-5

Keywords