Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kernel methods in Quantum Machine Learning

  • Review Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Quantum Machine Learning has established itself as one of the most promising applications of quantum computers and Noisy Intermediate Scale Quantum (NISQ) devices. In this paper, we review the latest developments regarding the usage of quantum computing for a particular class of machine learning algorithms known as kernel methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agresti I, et al. (2019) Pattern recognition techniques for boson sampling validation. Phys Rev X 9:14

    Google Scholar 

  • Aharonov D, Jones V, Landau Z (2006) A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the 38th annual ACM symposium on theory of computing, pp 427–436

  • Aïmeur, et al. (2013) Quantum speed-up for unsupervised learning. Mach Learn 90:261–287

    MathSciNet  MATH  Google Scholar 

  • Amin MH, et al. (2018) Quantum Boltzmann machine. Phys Rev X 8:11

    Google Scholar 

  • Anguita D, et al. (2003) Quantum optimization for training support vector machines. Neural Netw 16:763–770

    Google Scholar 

  • Arunachalam S, Wolf Ronald de (2017) A survey of quantum learning theory, arXiv:1701.06806

  • Barry J, et al. (2014) Quantum partially observable Markov decision processes. Phys Rev A 90:032311

    Google Scholar 

  • Benedetti M, et al. (2019) Adversarial quantum circuit learning for pure state approximation. New J Phys 21:043023

    MathSciNet  Google Scholar 

  • Biamonte J, et al. (2017) Quantum machine learning. Nature 549:195–202

    Google Scholar 

  • Bishop C (2016) Pattern recognition and machine learning, vol 738. Springer, New York

    Google Scholar 

  • Bottarelli L, et al. (2018) Biclustering with a quantum annealer. Soft Comput 22:6247–6260

    MATH  Google Scholar 

  • Buhrman H, Cleve R, Watrous J, De Wolf R (2001) Quantum fingerprinting. Phys Rev Lett 87:4

    Google Scholar 

  • Canabarro A, Fernandes Fanchini F, Malvezzi AL, Pereira R, Chaves R (2019) Unveiling phase transitions with machine learning. arXiv:1904.01486

  • Ciliberto C, et al. (2018) Quantum machine learning: a classical perspective. Proc R Soc A: Math Phys Eng Sci 474:20170551

    MathSciNet  MATH  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  • Crawford D, et al. (2016) Reinforcement learning using quantum Boltzmann machines, arXiv:1612.05695

  • Di Pierro A, et al. (2017) Distance kernelisation via topological quantum computation theory and practice of natural computing. Lect Notes Comput Sci 10687:269–280

    Google Scholar 

  • Di Pierro A, et al. (2018) Homological analysis of multi-qubit entanglement. Europhys Lett 123:30006

    Google Scholar 

  • Dong XY, Pollmann F, Zhang XF (2019) Machine learning of quantum phase transitions. Phys Rev B 99:121104

    Google Scholar 

  • Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys 81:074001

    MathSciNet  Google Scholar 

  • Dunjko V, et al. (2016) Quantum-enhanced machine learning. Phys Rev Lett 117:6

    MathSciNet  Google Scholar 

  • Giovannetti V, Lloyd S, Maccone L (2008) Quantum random access memory. Phys Rev Lett 100:4

    MathSciNet  MATH  Google Scholar 

  • Goldberg LA, Guo H (2017) The complexity of approximating complex-valued ising and tutte partition functions. Computational Complexity 26:765–833

    MathSciNet  MATH  Google Scholar 

  • Gray J, et al. (2018) Machine-learning-assisted many-body entanglement measurement. Phys Rev Lett 121:6

    Google Scholar 

  • Harrow AW, Hassidim A, Lloyd S (2009) Quantum algorithm for linear systems of equations. Phys Rev Lett 103:4

    MathSciNet  Google Scholar 

  • Havlicek V, Córcoles AD, et al. (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567:2019–212

    Google Scholar 

  • Heim B, et al. (2015) Quantum versus classical annealing of ising spin glasses. Science 348:215–217

    MathSciNet  MATH  Google Scholar 

  • Huembeli P, et al. (2019) Automated discovery of characteristic features of phase transitions in many-body localization. Phys Rev B 99:6

    Google Scholar 

  • Iten R, et al. (2018) Discovering physical concepts with neural networks, arXiv:1807.10300

  • Kauffman LH (1987) State models and the Jones polynomial. Topology 26:395–407

    MathSciNet  MATH  Google Scholar 

  • Levine Y, et al. (2018) Deep learning and quantum entanglement: fundamental connections with implications to network design. In: International conference on learning representations

  • Li Z, Liu X, Xu N, Du J (2015) Experimental realization of a quantum support vector machine. Phys Rev Lett 114:5

    Google Scholar 

  • Lloyd S, Mohseni M, Rebentrost P (2014) Quantum principal component analysis. Nat Phys 10:631–633

    Google Scholar 

  • Lu S, Braunstein SL (2014) Quantum decision tree classifier. Quantum Inf Process 13:757–770

    MathSciNet  MATH  Google Scholar 

  • Mcclean JR, Romero J, Babbush R, Aspuru-Guzik A (2016) The theory of variational hybrid quantum-classical algorithms. New J Phys 18:023023

    Google Scholar 

  • Mercer J, et al. (1909) Functions of positive and negative type and their connection the theory of integral equations, 209 Philosophical Transactions of the Royal Society of London

  • Mikhail V, et al. (2016) Altaisky towards a feasible implementation of quantum neural networks using quantum dots. Appl Phys Lett 108:103108

    Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw Hill, New York

    MATH  Google Scholar 

  • Mohri M, et al. (2012) Foundations of machine learning, vol 432. MIT Press, Cambridge

    Google Scholar 

  • Nielsen MA, Chuang IL (2011) Quantum computation and quantum information. Cambridge University Press, New York

    MATH  Google Scholar 

  • O’Driscoll L, et al. (2019) A hybrid machine learning algorithm for designing quantum experiments. Quantum Mach Intell 1:1–11

    Google Scholar 

  • Pachos JK (2012) Introduction to topological quantum computation. Cambridge University Press, New York

    MATH  Google Scholar 

  • Patrick J, et al. (2018) Coles quantum algorithm implementations for beginners, arXiv:1804.03719

  • Perdomo-Ortiz A, et al. (2018) Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci Technol 3:030502

    Google Scholar 

  • Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys Rev Lett 113:5

    Google Scholar 

  • Schuld M, Killoran N (2019) Quantum machine learning in feature Hilbert spaces. Phys Rev Lett 122:6

    Google Scholar 

  • Schuld M, Petruccione F (2018) Supervised learning with quantum computers, vol 287. Springer International Publishing, Berlin

    MATH  Google Scholar 

  • Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Contemp Phys 56(2):172–185

    MATH  Google Scholar 

  • Sergioli G, et al. (2018) A quantum-inspired version of the nearest mean classifier. Soft Comput 22:691–705

    MATH  Google Scholar 

  • Stoudenmire E, Schwab DJ (2016) Supervised learning with tensor networks. Advances in neural information processing systems (NIPS Proceedings) 29:4799–4807

    Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Google Scholar 

  • Theodoridis S (2008) Pattern recognition, vol 984. Elsevier Academic Press, Cambridge

    Google Scholar 

  • Wiebe N, et al. (2015) Quantum algorithms for nearest-neighbours methods for supervised and unsupervised learning. Quantum Info Comput 15:316–356

    MathSciNet  Google Scholar 

  • Windridge D, Mengoni R, Nagarajan R (2018) Quantum error-correcting output codes. Int J Quantum Info 16:1840003

    MATH  Google Scholar 

  • Wittek P (2014) Quantum machine learning, vol 176. Elsevier Academic Press, Cambridge

    MATH  Google Scholar 

  • Yu S, Albarrán-Arriagada F, Retamal JC, Wang YT, Liu W, Ke ZJ, Meng Y, Li ZP, Tang JS, Solano E, Lamata L, Li CF, Guo GC (2019) . Adv Quantum Technol 2(7-8):1800074

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Mengoni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengoni, R., Di Pierro, A. Kernel methods in Quantum Machine Learning. Quantum Mach. Intell. 1, 65–71 (2019). https://doi.org/10.1007/s42484-019-00007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42484-019-00007-4

Keywords