Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
W. Alt, Lipschitzian perturbations of infinite optimization problems, in: A.V. Fiacco, Ed., Mathematical Programming with Data Perturbations (M. Dekker, New York, 1983) 7–21.
J.P. Aubin, Lipschitz behaviour of solutions to convex minimization problems, Math. Oper. Res. 9 (1984) 87–111.
J.P. Aubin and A. Cellina, Differential Inclusions (Springer, Berlin, 1984).
A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control Optim. 22 (1984) 239–254.
B. Bank, J. Guddat, D. Klatte, B. Kummer K. Tammer, Non-Linear Parametric Optimization (Akademie-Verlag, Berlin, 1982).
F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).
J. Gauvin and F. Dubeau, Differential properties of the marginal value function in mathematical programming, Math. Programming 19 (1982) 101–119.
R. Henrion, D. Klatte, Metric regularity of the feasible set mapping in semi-infinite optimization, Preprint Nr. 92-5, Fachbereich Mathematik, Humboldt-Universität zu Berlin, 1992 (To appear in Appl. Math. Optim.).
R. Hettich, H. Th. Jongen, Semi-infinite programming: Conditions of optimality and applications, In: J. Stoer (ed.), Optimization Techniques, Part 2, Lecture Notes in Control and Information Sciences, Vol. 7 (Springer, Berlin, 1978) pp. 1–11.
R. Hettich, G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Manuscript, Universität Trier, FB 4 and University of Twente, Enschede, Faculty of Applied Mathematics, 1991.
R. Hettich, P. Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung (B.G. Teubner, Stuttgart, 1982).
H.Th. Jongen, F. Twilt, G.-W. Weber, Semi-infinite optimization: Structure and stability of the feasible set, J. Optim. Theory Appl 72 (1992) 529–552.
H. Kawasaki, Second-order necessary and sufficient optimality conditions for minimizing a sup-type function, Appl. Math. Optim. 26 (1992) 195–220.
D. Klatte, A note on quantitative stability results in nonlinear optimization, Seminarbericht Nr. 90 der Sektion Mathematik der Humboldt-Universität zu Berlin (Berlin, 1987) 77–86.
D. Klatte, Stable local minimizers in semi-infinite optimization: Regularity and second-order conditions, Manuscript, Institut für Operations Research, Universität Zürich, 1992 (To appear in J. Comput. Appl. Math.).
D. Klatte, Stability of stationary solutions in semi-infinite optimization via the reduction approach, in: W. Oettli, D. Pallaschke, Eds., Advances in Optimization (Springer, Berlin, 1992) 155–170.
D. Klatte, On regularity and stability in semi-infinite optimization, Manuscript, Institut für Operations Research, Universität Zürich, 1992 (Submitted to Set-Valued Analysis).
S.M. Robinson, Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976) 497–513.
S.M. Robinson, Generalized equations and their solutions, Part II: Applications to nonlinear programming, Math. Programming Study 19 (1982) 200–221.
S. M. Robinson, Local epi-continuity and local optimization, Math. Programming 37 (1987) 208–223.
R.T. Rockafellar, The Theory of Subgradients and its Application to Problems of Optimization. Convex and Nonvonvex Functions. (Heldermann-Verlag, Berlin, 1981).
R.T. Rockafellar, Lipschitzian properties of multifunctions, Nonlin. Analysis: Theory, Meth. Appl. 9 (1985) 867–885.
J.-J. Rückmann and G.-W. Weber, Semi-infinite optimization: Excisional stability of the feasible set, Manuscript, Departments of Mathematics, Humboldt Univ. Berlin and Aachen Univ. of Technology, 1992.
A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite progrema, Math. Oper. Res. 10 (1985) 207–219.
A. Shapiro, On Lipschitzian stability of optimal solutions of parametrized semi-infinite programs, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1992 (To appear in Math. Oper. Res.).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag
About this paper
Cite this paper
Klatte, D. (1994). Perturbation of stationary solutions in semi-infinite optimization. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035465
Download citation
DOI: https://doi.org/10.1007/BFb0035465
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-19893-2
Online ISBN: 978-3-540-39337-5
eBook Packages: Springer Book Archive