Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Perturbation of stationary solutions in semi-infinite optimization

  • Contributed Papers
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

  • 1364 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Alt, Lipschitzian perturbations of infinite optimization problems, in: A.V. Fiacco, Ed., Mathematical Programming with Data Perturbations (M. Dekker, New York, 1983) 7–21.

    Google Scholar 

  2. J.P. Aubin, Lipschitz behaviour of solutions to convex minimization problems, Math. Oper. Res. 9 (1984) 87–111.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.P. Aubin and A. Cellina, Differential Inclusions (Springer, Berlin, 1984).

    Book  MATH  Google Scholar 

  4. A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control Optim. 22 (1984) 239–254.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bank, J. Guddat, D. Klatte, B. Kummer K. Tammer, Non-Linear Parametric Optimization (Akademie-Verlag, Berlin, 1982).

    Book  Google Scholar 

  6. F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

    MATH  Google Scholar 

  7. J. Gauvin and F. Dubeau, Differential properties of the marginal value function in mathematical programming, Math. Programming 19 (1982) 101–119.

    MathSciNet  Google Scholar 

  8. R. Henrion, D. Klatte, Metric regularity of the feasible set mapping in semi-infinite optimization, Preprint Nr. 92-5, Fachbereich Mathematik, Humboldt-Universität zu Berlin, 1992 (To appear in Appl. Math. Optim.).

    Google Scholar 

  9. R. Hettich, H. Th. Jongen, Semi-infinite programming: Conditions of optimality and applications, In: J. Stoer (ed.), Optimization Techniques, Part 2, Lecture Notes in Control and Information Sciences, Vol. 7 (Springer, Berlin, 1978) pp. 1–11.

    Chapter  Google Scholar 

  10. R. Hettich, G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Manuscript, Universität Trier, FB 4 and University of Twente, Enschede, Faculty of Applied Mathematics, 1991.

    Google Scholar 

  11. R. Hettich, P. Zencke, Numerische Methoden der Approximation und semi-infiniten Optimierung (B.G. Teubner, Stuttgart, 1982).

    Book  MATH  Google Scholar 

  12. H.Th. Jongen, F. Twilt, G.-W. Weber, Semi-infinite optimization: Structure and stability of the feasible set, J. Optim. Theory Appl 72 (1992) 529–552.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Kawasaki, Second-order necessary and sufficient optimality conditions for minimizing a sup-type function, Appl. Math. Optim. 26 (1992) 195–220.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Klatte, A note on quantitative stability results in nonlinear optimization, Seminarbericht Nr. 90 der Sektion Mathematik der Humboldt-Universität zu Berlin (Berlin, 1987) 77–86.

    Google Scholar 

  15. D. Klatte, Stable local minimizers in semi-infinite optimization: Regularity and second-order conditions, Manuscript, Institut für Operations Research, Universität Zürich, 1992 (To appear in J. Comput. Appl. Math.).

    Google Scholar 

  16. D. Klatte, Stability of stationary solutions in semi-infinite optimization via the reduction approach, in: W. Oettli, D. Pallaschke, Eds., Advances in Optimization (Springer, Berlin, 1992) 155–170.

    Chapter  Google Scholar 

  17. D. Klatte, On regularity and stability in semi-infinite optimization, Manuscript, Institut für Operations Research, Universität Zürich, 1992 (Submitted to Set-Valued Analysis).

    Google Scholar 

  18. S.M. Robinson, Stability theorems for systems of inequalities, Part II: Differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976) 497–513.

    Article  MATH  MathSciNet  Google Scholar 

  19. S.M. Robinson, Generalized equations and their solutions, Part II: Applications to nonlinear programming, Math. Programming Study 19 (1982) 200–221.

    Article  MATH  Google Scholar 

  20. S. M. Robinson, Local epi-continuity and local optimization, Math. Programming 37 (1987) 208–223.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.T. Rockafellar, The Theory of Subgradients and its Application to Problems of Optimization. Convex and Nonvonvex Functions. (Heldermann-Verlag, Berlin, 1981).

    Google Scholar 

  22. R.T. Rockafellar, Lipschitzian properties of multifunctions, Nonlin. Analysis: Theory, Meth. Appl. 9 (1985) 867–885.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.-J. Rückmann and G.-W. Weber, Semi-infinite optimization: Excisional stability of the feasible set, Manuscript, Departments of Mathematics, Humboldt Univ. Berlin and Aachen Univ. of Technology, 1992.

    Google Scholar 

  24. A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite progrema, Math. Oper. Res. 10 (1985) 207–219.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Shapiro, On Lipschitzian stability of optimal solutions of parametrized semi-infinite programs, Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, 1992 (To appear in Math. Oper. Res.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Klatte, D. (1994). Perturbation of stationary solutions in semi-infinite optimization. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035465

Download citation

  • DOI: https://doi.org/10.1007/BFb0035465

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics