Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We investigate the utility of geometric (Clifford) algebras (GA) methods in two specific applications to quantum information science. First, using the multiparticle spacetime algebra (MSTA, the geometric algebra of a relativistic configuration space), we present an explicit algebraic description of one and two-qubit quantum states together with a MSTA characterization of one and two-qubit quantum computational gates. Second, using the above mentioned characterization and the GA description of the Lie algebras SO (3) and SU (2) based on the rotor group Spin + (3, 0) formalism, we reexamine Boykin’s proof of universality of quantum gates. We conclude that the MSTA approach does lead to a useful conceptual unification where the complex qubit space and the complex space of unitary operators acting on them become united, with both being made just by multivectors in real space. Finally, the GA approach to rotations based on the rotor group does bring conceptual and computational advantages compared to standard vectorial and matricial approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hestenes D.: Spacetime Algebra. Gordon and Breach, New York (1966)

    Google Scholar 

  2. C. Doran and A. Lasenby, Geometric Algebra for Physicists. Cambridge University Press (2003).

  3. Lasenby A., Doran C., Gull S.: Gravity, Gauge Theories and Geometric Algebra. Phil. Trans. Roy. Soc. Lond. A356, 487 (1998)

    MathSciNet  ADS  Google Scholar 

  4. Francis M.R., Kosowsky A.: Geometric algebra techniques for general relativity. Annals of Physics 311, 459 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W. E. Baylis, Electrodynamics: A Modern Geometric Approach. World Scientific (1988).

  6. Cafaro C., Ali S.A.: The Spacetime Algebra Approach to Massive Classical Electrodynamics with Magnetic Monopoles. Adv. appl. Clifford alg. 17(1), 23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cafaro C.: Finite-Range Electromagnetic Interaction and Magnetic Charges: Spacetime Algebra or Algebra of Physical Space?. Adv. appl. Clifford alg. 17(4), 617 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Yu. Vlasov, Quantum Gates and Clifford Algebras. arXiv:quant-ph/9907079 (1999).

  9. T. F. Havel and C. Doran, Geometric Algebra in Quantum Information Processing. quant-ph/0004031 (2001).

  10. Somaroo S.S. et al.: Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A240, 1 (1998)

    MathSciNet  ADS  Google Scholar 

  11. Aerts D., Czachor M.: Cartoon computation: quantum-like computing without quantum mechanics. J. Phys. A40, 259 (2007)

    MathSciNet  ADS  Google Scholar 

  12. Czachor M.: Elementary gates for cartoon computation. J. Phys. A40, 753 (2007)

    MathSciNet  ADS  Google Scholar 

  13. Aerts D., Czachor M.: Tensor-product versus geometric-product coding. Phys. Rev. A77, 012316 (2008)

    MathSciNet  ADS  Google Scholar 

  14. A. Lasenby et al., 2-Spinors, Twistors and Supersymmetry in the Spacetime Algebra. in Z. Oziewicz et al., eds., Spinors, Twistors, Clifford Algebras and Quantum Deformations (Kluwer Academic, Dordrecht, 1993), p. 233.

  15. Doran C. et al.: States and Operators in the Spacetime Algebra. Found. Phys. 23, 1239 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  16. Doran C. et al.: Spacetime algebra and electron physics. Adv. Imaging Electron Phys. 95, 271 (1996)

    Article  Google Scholar 

  17. Somaroo S. et al.: Geometric algebra and the causal approach to multiparticle quantum mechanics. J. Math. Phys. 40, 3327 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. Nielsen and I. L. Chuang, Quantum Computation and Information. Cambridge University Press (2000).

  19. P. O. Boykin et al., On universal and fault-tolerant quantum computing. In Proceedings of the 40th Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos-CA (1999).

  20. Boykin P.O. et al.: A new universal and fault-tolerant quantum basis. Information Processing Letters 75, 101 (2000)

    Article  MathSciNet  Google Scholar 

  21. Hestenes D.: Observables, Operators, and Complex Numbers in the Dirac Theory. J. Math. Phys. 16, 556 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  22. Holland P.R.: Causal interpretation of a system of two spin-\({\frac{1}{2}}\) particles. Phys. Rep. 169, 294 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hamermesh M.: Group Theory and Its Applications to Physical Problems. Dover Publication, Inc., New York (1968)

    Google Scholar 

  24. M. Maggiore, A Modern Introduction to Quantum Field Theory. Oxford University Press (2005).

  25. N. D. Mermin, Quantum Computer Science. Cambridge University Press (2007).

  26. I. Porteous, Mathematical Structure of Clifford Algebras. In: Lectures on Clifford (Geometric) Algebras and Applications, R. Ablamowicz and G. Sobczyk, Editors; Birkhäuser (2004).

  27. Deutsch D.: Quantum computational networks. Proc. R. Soc. Lond. A425, 73 (1989)

    MathSciNet  ADS  Google Scholar 

  28. Barenco A.: A Universal Two-Bit Gate for Quantum Computation. Proc. R. Soc. Lond. A449, 679 (1995)

    MathSciNet  ADS  Google Scholar 

  29. Deutsch D. et al.: Universality in quantum computation. Proc. R. Soc. Lond. A449, 669 (1995)

    MathSciNet  ADS  Google Scholar 

  30. Lloyd S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346 (1996)

    Article  ADS  Google Scholar 

  31. Calderbank R. et al.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theor. 44, 1369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Shor, Fault-tolerant quantum computation. In Proceedings of the 37th Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos-CA (1996).

  33. P. Kaye, R. Laflamme and M. Mosca, An Introduction to Quantum Computing. Oxford University Press (2007).

  34. Barenco A. et al.: Elementary gates for quantum computation. Phys. Rev. A52, 3457 (1995)

    ADS  Google Scholar 

  35. A. Lasenby et al., STA and the Interpretation of Quantum Mechanics. In Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, W. E. Baylis, Editor; Birkhäuser (1996).

  36. Nielsen M.A. et al.: Quantum Computation as Geometry. Science 311, 1133 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Dowling M.R., Nielsen M.A.: The Geometry of Quantum Computation. Quantum Information & Computation 8, 0861 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cafaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cafaro, C., Mancini, S. A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing. Adv. Appl. Clifford Algebras 21, 493–519 (2011). https://doi.org/10.1007/s00006-010-0269-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-010-0269-x

Keywords