Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Texture Attribute Analysis of GPR Data for Archaeological Prospection

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We evaluate the applicability and the effectiveness of texture attribute analysis of 2-D and 3-D GPR datasets obtained in different archaeological environments. Textural attributes are successfully used in seismic stratigraphic studies for hydrocarbon exploration to improve the interpretation of complex subsurface structures. We use a gray-level co-occurrence matrix (GLCM) algorithm to compute second-order statistical measures of textural characteristics, such as contrast, energy, entropy, and homogeneity. Textural attributes provide specific information about the data, and can highlight characteristics as uniformity or complexity, which complement the interpretation of amplitude data and integrate the features extracted from conventional attributes. The results from three archaeological case studies demonstrate that the proposed texture analysis can enhance understanding of GPR data by providing clearer images of distribution, volume, and shape of potential archaeological targets and related stratigraphic units, particularly in combination with the conventional GPR attributes. Such strategy improves the interpretability of GPR data, and can be very helpful for archaeological excavation planning and, more generally, for buried cultural heritage assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angelo, S.M., Matos, M., Marfurt, K.J. (2009). Integrated seismic texture segmentation and clustering analysis to improved delineation of reservoir geometry. In 2009 SEG Annual Meeting. Society of Exploration Geophysicists.

  • Annan, A. P. (2003). Ground penetrating radar applications principles, procedures and applications. Mississauga: Sensors & Software Inc.

    Google Scholar 

  • Bini, M., Fornaciari, A., Ribolini, A., Bianchi, A., Sartini, S., & Coschino, F. (2010). Medieval phases of settlement at Benabbio castle, Apennine mountains, Italy: evidence from ground penetrating radar survey. Journal of Archaeological Science, 37(12), 3059–3067.

    Article  Google Scholar 

  • Böniger, U., & Tronicke, J. (2010). Integrated data analysis at an archaeological site: a case study using 3D GPR, magnetic, and high-resolution topographic data. Geophysics, 75(4), B169–B176.

    Article  Google Scholar 

  • Cavalier, M. (1981). Stromboli: villaggio preistorico di S. Vincenzo. Scavi Giugno 1980. Sicilia Archeologica Trapani, 14(46–47), 27–54.

    Google Scholar 

  • Chopra, S., & Alexeev, V. (2006). Applications of texture attribute analysis to 3D seismic data. The Leading Edge, 25(8), 934–940.

    Article  Google Scholar 

  • Chopra, S., & Marfurt, K.J. (2007). Seismic attributes for prospect identification and reservoir characterization: SEG/EAGE. (p. 464).

  • Conyers, L. B. (2013). Ground-penetrating radar for archaeology (3rd ed., p. 258). Latham: Alta Mira Press.

    Google Scholar 

  • Conyers, L. B., & Leckebusch, J. (2010). Geophysical archaeology research agendas for the future: some ground-penetrating radar examples. Archaeological Prospection, 17(2), 117–123.

    Google Scholar 

  • Creasman, P. P., Sassen, D., Koepnick, S., & Doyle, N. (2010). Ground-penetrating radar survey at the pyramid complex of Senwosret III at Dahshur, Egypt, 2008: search for the lost boat of a Pharaoh. Journal of Archaeological Science, 37(3), 516–524.

    Article  Google Scholar 

  • de Matos, M. C., Yenugu, M., Angelo, S. M., & Marfurt, K. J. (2011). Integrated seismic texture segmentation and cluster analysis applied to channel delineation and chert reservoir characterization. Geophysics, 76(5), P11–P21.

    Article  Google Scholar 

  • Deiana, D. (2008). A texture analysis of 3D GPR images. Doctoral dissertation, TU Delft, Delft University of Technology, p. 71.

  • Eichkitz, C. G., Amtmann, J., & Schreilechner, M. G. (2013). Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions. Computers and Geosciences, 60, 176–183.

    Article  Google Scholar 

  • Forte, E., & Pipan, M. (2008). Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). Journal of Archaeological Science, 35(9), 2614–2623.

    Article  Google Scholar 

  • Forte, E., Pipan, M., Casabianca, D., Di Cuia, R., & Riva, A. (2012). Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics, 81, 76–87.

    Article  Google Scholar 

  • Gao, D. (2003). Volume texture extraction for 3D seismic visualization and interpretation. Geophysics, 68(4), 1294–1302.

    Article  Google Scholar 

  • Gao, D. (2011). Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: a review. Geophysics, 76(2), W1–W13.

    Article  Google Scholar 

  • Goodman, D., Nishimura, Y., & Rogers, J. D. (1995). GPR time slices in archaeological prospection. Archaeological prospection, 2, 85–90.

    Google Scholar 

  • Grasmueck, M. (1996). 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61(4), 1050–1064.

    Article  Google Scholar 

  • Hall-Beyer, M. (2007). GLCM texture tutorial, 2007. University of Calgary, 21 (Online document).

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  • Kaizer, H. (1955). A quantification of textures on aerial photographs. M.S. thesis, Boston University.

  • Kokelaar, P., & Romagnoli, C. (1995). Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: stromboli, Italy. Bulletin of Volcanology, 57(4), 240–262.

    Article  Google Scholar 

  • Leckebusch, J., & Peikert, R. (2001). Investigating the true resolution and three-dimensional capabilities of ground-penetrating radar data in archaeological surveys: measurements in a sand box. Archaeological Prospection, 8(1), 29–40.

    Article  Google Scholar 

  • Love, P. L., & Simaan, M. (1984). Segmentation of stacked seismic data by the classification of image texture. SEG Technical Program Expanded Abstracts, 3, 480–482.

  • Lualdi, M., & Lombardi, F. (2014). Effects of antenna orientation on 3-D ground penetrating radar surveys: an archaeological perspective. Geophysical Journal International, 196(2), 818–827.

    Article  Google Scholar 

  • McClymont, A. F., Green, A. G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D. C., et al. (2008). Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics, 73(2), B11–B23.

    Article  Google Scholar 

  • Moysey, S., Knight, R. J., & Jol, H. M. (2006). Texture-based classification of ground-penetrating radar images. Geophysics, 71(6), K111–K118.

    Article  Google Scholar 

  • Patel, D., Giertsen, C., Thurmond, J., Gjelberg, J., & Grller, E. (2008). The seismic analyzer: interpreting and illustrating 2d seismic data. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1571–1578.

    Article  Google Scholar 

  • Pérez-Gracia, V., Caselles, J. O., Clapes, J., Osorio, R., Martínez, G., & Canas, J. A. (2009). Integrated near-surface geophysical survey of the Cathedral of Mallorca. Journal of Archaeological Science, 36(7), 1289–1299.

    Article  Google Scholar 

  • Pipan, M., Baradello, L., Forte, E., & Finetti, I. (2001). Ground penetrating radar study of iron age tombs in southeastern Kazakhstan. Archaeological Prospection, 8(3), 141–155.

    Article  Google Scholar 

  • Pipan, M., Baradello, L., Forte, E., Prizzon, A., & Finetti, I. (1999). 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site. Journal of Applied Geophysics, 41(2), 271–292.

    Article  Google Scholar 

  • Piro, S., Goodman, D., & Nishimura, Y. (2003). The study and characterization of Emperor Traiano’s Villa (Altopiani di Arcinazzo, Roma) using high-resolution integrated geophysical surveys. Archaeological Prospection, 10(1), 1–25.

    Article  Google Scholar 

  • Piro, S., Peloso, D., & Gabrielli, R. (2007). Integrated geophysical and topographical investigation in the territory of Ancient Tarquinia (Viterbo, central Italy). Archaeological Prospection, 14(3), 191–201.

    Article  Google Scholar 

  • Pitas, I., & Kotropoulos, C. (1992). A texture-based approach to the segmentation of seismic images. Pattern Recognition, 25(9), 929–945.

    Article  Google Scholar 

  • Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Sæter, T., Schlaf, J., Sønneland, L. (2000). Three-dimensional texture attributes for seismic data analysis. In 70th Annual International Meeting, Society of Exploration Geophysics Expanded Abstracts, Calgary, Canada, 668–671.

  • Reed, T. R., & Dubuf, J. H. (1993). A review of recent texture segmentation and feature extraction techniques. CVGIP: Image understanding, 57(3), 359–372.

    Article  Google Scholar 

  • Reed, T. B., & Hussong, D. (1989). Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. Journal of Geophysical Research: Solid Earth (1978–2012), 94(B6), 7469–7490.

    Article  Google Scholar 

  • Rosi, M., Bertagnini, A., & Landi, P. (2000). Onset of the persistent activity at Stromboli volcano (Italy). Bulletin of volcanology, 62(4–5), 294–300.

    Article  Google Scholar 

  • Sassen, D. S., & Everett, M. E. (2009). 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics, 74(3), J23–J34.

    Article  Google Scholar 

  • Tavano, S. (1986). Aquileia e Grado: storia, arte e cultura, Ed. LINT, Trieste (in Italian).

  • Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustafsson, C., et al. (2010). Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeological Prospection, 17, 175–186.

    Article  Google Scholar 

  • Urban, T. M., Rowan, Y. M., & Kersel, M. M. (2014). Ground-penetrating radar investigations at Marj Rabba, a Chalcolithic site in the lower Galilee of Israel. Journal of Archaeological Science, 46, 96–106.

    Article  Google Scholar 

  • Van der Baan, M., & Jutten, C. (2000). Neural networks in geophysical applications. Geophysics, 65(4), 1032–1047.

    Article  Google Scholar 

  • Vaughan, C. J. (1986). Ground-penetrating radar surveys used in archaeological investigations. Geophysics, 51(3), 595–604.

    Article  Google Scholar 

  • Verdonck, L., Vermeulen, F., Docter, R., Meyer, C., & Kniess, R. (2013). 2D and 3D ground-penetrating radar surveys with a modular system: data processing strategies and results from archaeological field tests. Near Surface Geophysics, 11(2), 239–252.

    Google Scholar 

  • West, B. P., May, S. R., Eastwood, J. E., & Rossen, C. (2002). Interactive seismic facies classification using textural attributes and neural networks. The Leading Edge, 21(10), 1042–1049.

    Article  Google Scholar 

  • Yenugu, M., Marfurt, K. J., & Matson, S. (2010). Seismic texture analysis for reservoir prediction and characterization. The Leading Edge, 29(9), 1116–1121.

    Article  Google Scholar 

  • Zhang, Z., & Simaan, M. (1987). A rule-based interpretation system for segmentation of seismic images. Pattern Recognition, 20(1), 45–53.

    Article  Google Scholar 

  • Zhao, W., Forte, E., Pipan, M., & Tian, G. (2013a). Ground penetrating radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97, 107–117.

    Article  Google Scholar 

  • Zhao, W., Tian, G., Wang, B., Forte, E., Pipan, M., Lin, J., et al. (2013b). 2D and 3D imaging of a buried prehistoric canoe using GPR attributes: a case study. Near Surface Geophysics, 11(4), 457–464.

    Google Scholar 

  • Zhao, W., Forte, E., Levi, S. T., Pipan, M., & Tian, G. (2015a). Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. Journal of Archaeological Science, 54, 77–85.

    Article  Google Scholar 

  • Zhao, W., Tian, G., Forte, E., Pipan, M., Wang, Y., Li, X., et al. (2015b). Advances in GPR data acquisition and analysis for archaeology. Geophysical Journal International, 202(1), 62–71.

    Article  Google Scholar 

  • Zhao, W., Forte, E., Colucci, R. R., & Pipan, M. (2016). High-resolution glacier imaging and characterization by means of GPR attribute analysis. Geophysical Journal International, 206, 1366–1374.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the International Centre for Theoretical Physics (ICTP, Trieste, Italy) Training on Research in Italian Laboratories (TRIL) programme, which sponsored the scholarship of the first author. We also thank dGB Earth Sciences for the OpendTect open source seismic data analysis software, and two anonymous reviewers for providing thoughtful and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenke Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Forte, E. & Pipan, M. Texture Attribute Analysis of GPR Data for Archaeological Prospection. Pure Appl. Geophys. 173, 2737–2751 (2016). https://doi.org/10.1007/s00024-016-1355-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1355-3

Keywords