Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this work, the sensitivity of tropical cyclone (TC) simulations over the Bay of Bengal to planetary boundary layer (PBL) physics in the WRF model is investigated. Numerical simulations are performed with WRF-ARW model using NCEP GFS data for five very severe cyclonic storms (Vardha, Hudhud, Phailin, Lehar and Thane). Five conceptually different PBL schemes (YSU, MYJ, QNSE, MYNN and BouLac) are evaluated. Results of 25 sensitivity experiments showed that PBL physics mainly affected the intensity while producing small variations in track prediction. The QNSE, followed by MYJ and BouLac, produced highly intensified storms, and MYNN produced weakly intensified storms. The YSU scheme showed better comparisons with IMD best track estimates. From the analysis of five cyclones, it is found that the YSU produced minimum errors for central pressure (−5.4, −0.8, −2.6, −5.25 hPa), maximum wind (19, 7.6, −0.96, −0.77 m/s) and track (66, 146, 182, 217 km) at 24-, 48-, 72- and 96-h forecast intervals. Analysis of various thermodynamical and dynamical parameters clearly showed that the PBL physics impacts the predictions by variation of (1) surface energy fluxes, (2) convergence, (3) inflow/outflow, (4) tangential winds, (5) vertical motion and (6) strength of the warm core and associated storm structure. A detailed analysis conducted in the case of Hudhud indicated that the PBL schemes influenced the intensity predictions through a WISHE type of feedback by the variation of convergence, radial inflow, vertical motion, and surface fluxes. While the YSU and MYNN schemes produced moderate values of radial inflow, the QNSE, MYJ and BouLac schemes produced stronger inflow. The stronger inflow, spin-up and stronger wind-induced transport of energy fluxes in the QNSE, MYJ and BouLac schemes led to a stronger convection and a higher intensification of TCs in these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Avolio, E., Federico, S., Miglietta, M. M., Feudo, T. L., Calidonna, C. R., & Sempreviva, A. M. (2017). Sensitivity analysis of WRF model PBL schemes in simulating boundary-layer variables in southern Italy: an experimental campaign. Atmospheric Research, 192, 58–71.

    Google Scholar 

  • Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., et al. (2016). Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmospheric Research, 176, 185–201.

    Google Scholar 

  • Barnes, G. M., & Fuentes, P. (2010). Eye excess energy and the rapid intensification of Hurricane Lili (2002). Monthly Weather Review, 138(4), 1446–1458.

    Google Scholar 

  • Bhaskar Rao, D. V., & Hari Prasad, D. (2007). Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Natural Hazards, 41(3), 429–445.

    Google Scholar 

  • Black, P. G., D’Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B., et al. (2007). Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bulletin of the American Meteorological Society, 88(3), 357–374.

    Google Scholar 

  • Bougeault, P., & Lacarrere, P. (1989). Parameterization of orography-induced turbulence in a mesobeta–scale model. Monthly Weather Review, 117(8), 1872–1890.

    Google Scholar 

  • Braun, S. A., & Tao, W. K. (2000). Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128(12), 3941–3961.

    Google Scholar 

  • Byers, H. R. (1944). Atmospheric turbulence and the wind structure near the surface of the earth. General meteorology. New York: McGraw-Hill Book Co., Inc.

    Google Scholar 

  • Chandrasekar, R., & Balaji, C. (2012). Sensitivity of tropical cyclone Jal simulations to physics parameterizations. Journal of Earth System Science, 121(4), 923–946.

    Google Scholar 

  • Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585.

    Google Scholar 

  • Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaria, M., et al. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), 1990–2005.

    Google Scholar 

  • Demuth, J. L., DeMaria, M., Knaff, J. A., & Vonder Haar, T. H. (2004). Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. Journal of Applied Meteorology, 43(2), 282–296.

    Google Scholar 

  • Drennan, W. M., Zhang, J. A., French, J. R., McCormick, C., & Black, P. G. (2007). Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. Journal of the Atmospheric Sciences, 64(4), 1103–1115.

    Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20), 3077–3107.

    Google Scholar 

  • Eastin, M. D., Gray, W. M., & Black, P. G. (2005). Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Monthly Weather Review, 133(1), 209–227.

    Google Scholar 

  • Emanuel, K. A. (1986). An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences, 43(6), 585–605.

    Google Scholar 

  • Franklin, J. L., Black, M. L., & Valde, K. (2003). GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather and Forecasting, 18(1), 32–44.

    Google Scholar 

  • French, J. R., Drennan, W. M., Zhang, J. A., & Black, P. G. (2007). Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. Journal of the Atmospheric Sciences, 64(4), 1089–1102.

    Google Scholar 

  • Garratt, J. R. (1994). The atmospheric boundary layer. Earth-Science Reviews, 37(1–2), 89–134.

    Google Scholar 

  • Gopalakrishnan, S. G., Marks, F., Jr., Zhang, X., Bao, J. W., Yeh, K. S., & Atlas, R. (2011). The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Monthly Weather Review, 139(6), 1762–1784.

    Google Scholar 

  • Gopalakrishnan, S. G., Marks, F., Jr., Zhang, J. A., Zhang, X., Bao, J. W., & Tallapragada, V. (2013). A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. Journal of the Atmospheric Sciences, 70(2), 524–541.

    Google Scholar 

  • Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669–700.

    Google Scholar 

  • Greeshma, M., Srinivas, C. V., Hari Prasad, K. B., Baskaran, R., & Venkatraman, B. (2019). Sensitivity of tropical cyclone predictions in the coupled atmosphere–ocean model WRF-3DPWP to surface roughness schemes. Meteorological Applications, 26(2), 324–346.

    Google Scholar 

  • Hariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Rao, S. V. B., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145, 27–44.

    Google Scholar 

  • Hazra, V., & Pattnaik, S. (2020). Systematic errors in the WRF model planetary boundary layer schemes for two contrasting monsoon seasons over the state of Odisha and its neighborhood region. Theoretical and Applied Climatology, 139(3), 1079–1096.

    Google Scholar 

  • Hill, K. A., & Lackmann, G. M. (2009). Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Monthly Weather Review, 137(2), 745–765.

    Google Scholar 

  • Hogsett, W., & Zhang, D. L. (2009). Numerical simulation of hurricane bonnie (1998). Part III: Energetics. Journal of the Atmospheric Sciences, 66(9), 2678–2696.

    Google Scholar 

  • Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54(21), 2519–2541.

    Google Scholar 

  • Holton, J. R. (2004). Introduction to dynamic meteorology (4th ed., p. 535). Oxford: Elsevier.

    Google Scholar 

  • Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341.

    Google Scholar 

  • Houze, R. A., Chen, S. S., Smull, B. F., Lee, W. C., & Bell, M. M. (2007). Hurricane intensity and eyewall replacement. Science, 315(5816), 1235–1239.

    Google Scholar 

  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113, D13103. https://doi.org/10.1029/2008JD009944.

    Article  Google Scholar 

  • IMD. (2003). Cyclone manual. New Delhi: Published by India Meteorological Department.

    Google Scholar 

  • Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945.

    Google Scholar 

  • Kain, J. S. (2004). The Kain–Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), 170–181.

    Google Scholar 

  • Kanada, S., Wada, A., Nakano, M., & Kato, T. (2012). Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. Journal of Geophysical Research: Atmospheres, 117, D03107. https://doi.org/10.1029/2011JD016582.

    Article  Google Scholar 

  • Kepert, J. D. (2006a). Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. Journal of the Atmospheric Sciences, 63(9), 2169–2193.

    Google Scholar 

  • Kepert, J. D. (2006b). Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. Journal of the Atmospheric Sciences, 63(9), 2194–2211.

    Google Scholar 

  • Kepert, J. D. (2012). Choosing a boundary layer parameterization for tropical cyclone modeling. Monthly Weather Review, 140(5), 1427–1445.

    Google Scholar 

  • Khain, A., Lynn, B., & Shpund, J. (2016). High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmospheric Research, 167, 129–145.

    Google Scholar 

  • Knaff, J. A., DeMaria, M., Molenar, D. A., Sampson, C. R., & Seybold, M. G. (2011). An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. Journal of Applied Meteorology and Climatology, 50(10), 2149–2166.

    Google Scholar 

  • Krishna, K. O., Mohanty, U. C., Routray, A., Kulkarni, M. A., & Mohapatra, M. (2012). Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Natural Hazards, 63(3), 1337–1359.

    Google Scholar 

  • Kumari, K. V., Sagar, S. K., Viswanadhapalli, Y., Dasari, H. P., & Rao, S. V. B. (2019). Role of planetary boundary layer processes in the simulation of tropical cyclones over the Bay of Bengal. Pure and Applied Geophysics, 176(2), 951–977.

    Google Scholar 

  • Li, X., & Pu, Z. (2009). Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. Journal of the Meteorological Society of Japan Series II, 87(3), 403–421.

    Google Scholar 

  • Loh, W. T., Juneng, L., & Tangang, F. T. (2011). Sensitivity of Typhoon Vamei (2001) simulation to planetary boundary layer parameterization using PSU/NCAR MM5. Pure and Applied Geophysics, 168(10), 1799–1811.

    Google Scholar 

  • Ma, Z., Fei, J., Cheng, X., Wang, Y., & Huang, X. (2015). Contributions of surface sensible heat fluxes to tropical cyclone. Part II: The sea spray processes. Journal of the Atmospheric Sciences, 72(11), 4218–4236.

    Google Scholar 

  • Ma, L. M., & Tan, Z. M. (2009). Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmospheric Research, 92(2), 190–211.

    Google Scholar 

  • Malakar, P., Kesarkar, A. P., Bhate, J., & Deshamukhya, A. (2020). Appraisal of data assimilation techniques for dynamical downscaling of the structure and intensity of tropical cyclones. Earth and Space Science, 7(2), e2019EA000945.

    Google Scholar 

  • Malkus, J. S., & Riehl, H. (1960). On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12(1), 1–20.

    Google Scholar 

  • McBride, J. L., & Zehr, R. (1981). Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. Journal of the Atmospheric Sciences, 38(6), 1132–1151.

    Google Scholar 

  • Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7), 1791–1806.

    Google Scholar 

  • Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851–875.

    Google Scholar 

  • Miglietta, M. M., Mastrangelo, D., & Conte, D. (2015). Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmospheric Research, 153, 360–375.

    Google Scholar 

  • Milovac, J., Warrach-Sagi, K., Behrendt, A., Späth, F., Ingwersen, J., & Wulfmeyer, V. (2016). Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. Journal of Geophysical Research: Atmospheres, 121(2), 624–649.

    Google Scholar 

  • Miyoshi, T., Komori, T., Yonehara, H., Sakai, R., & Yamaguchi, M. (2010). Impact of resolution degradation of the initial condition on typhoon track forecasts. Weather and Forecasting, 25(5), 1568–1573.

    Google Scholar 

  • Mohan, P. R., Srinivas, C. V., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2019). Tropical cyclone simulations over Bay of Bengal with ARW model: Sensitivity to cloud microphysics schemes. Atmospheric Research, 230, 104651.

    Google Scholar 

  • Mohanty, U. C., Nadimpalli, R., Mohanty, S., & Osuri, K. K. (2019). Recent advancements in prediction of tropical cyclone track over north Indian Ocean basin. MAUSAM, 70(1), 57–70.

    Google Scholar 

  • Montgomery, M. T., Smith, R. K., & Nguyen, S. V. (2010). Sensitivity of tropical-cyclone models to the surface drag coefficient. Quarterly Journal of the Royal Meteorological Society, 136(653), 1945–1953.

    Google Scholar 

  • Mukhopadhyay, P., Taraphdar, S., & Goswami, B. N. (2011). Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. Journal of Geophysics Research, 116, D05116. https://doi.org/10.1029/2010jd014700.

    Article  Google Scholar 

  • Nakanishi, M., & Niino, H. (2006). An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119(2), 397–407.

    Google Scholar 

  • Nakanishi, M., & Niino, H. (2009). Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan Series II, 87(5), 895–912.

    Google Scholar 

  • Nolan, D. S., Moon, Y., & Stern, D. P. (2007). Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. Journal of the Atmospheric Sciences, 64(10), 3377–3405.

    Google Scholar 

  • Nolan, D. S., Zhang, J. A., & Stern, D. P. (2009a). Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Monthly Weather Review, 137(11), 3651–3674.

    Google Scholar 

  • Nolan, D. S., Zhang, J. A., & Stern, D. P. (2009b). Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part II: inner core boundary layer and eye wall structure. Monthly Weather Review, 137, 3675–3698.

    Google Scholar 

  • Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3–40.

    Google Scholar 

  • Parker, C. L., Lynch, A. H., & Mooney, P. A. (2017). Factors affecting the simulated trajectory and intensification of Tropical Cyclone Yasi (2011). Atmospheric Research, 194, 27–42.

    Google Scholar 

  • Powell, M. D. (1982). The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Monthly Weather Review, 110(12), 1912–1932.

    Google Scholar 

  • Raghavan, S., & Sen Sarma, A. K. (2000). Tropical cyclone impacts in India and neighbourhood. Storms, 1, 339–356.

    Google Scholar 

  • Rai, D., & Pattnaik, S. (2018). Sensitivity of tropical cyclone intensity and structure to planetary boundary layer parameterization. Asia-Pacific Journal of Atmospheric Sciences, 54(3), 473–488.

    Google Scholar 

  • Rai, D., & Pattnaik, S. (2019). Evaluation of WRF planetary boundary layer parameterization schemes for simulation of monsoon depressions over India. Meteorology and Atmospheric Physics, 131(5), 1529–1548.

    Google Scholar 

  • Raja Shekhar, S. S., Srinivas, C. V., Rakesh, P. T., Deepu, R., Rao, P. P., Baskaran, R., et al. (2020). Online Nuclear Emergency Response System (ONERS) for consequence assessment and decision support in the early phase of nuclear accidents-Simulations for postulated events and methodology validation. Progress in Nuclear Energy, 119, 103177.

    Google Scholar 

  • Rajeswari, J. R., Srinivas, C. V., Rao, T. N., & Venkatraman, B. (2020). Impact of land surface physics on the simulation of boundary layer characteristics at a tropical coastal station. Atmospheric Research, 238, 104888.

    Google Scholar 

  • Raju, P. V. S., Potty, J., & Mohanty, U. C. (2011). Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorology and Atmospheric Physics, 113(3–4), 125.

    Google Scholar 

  • Raju, P. V. S., Potty, J., & Mohanty, U. C. (2012). Prediction of severe tropical cyclones over the Bay of Bengal during 2007–2010 using high-resolution mesoscale model. Natural Hazards, 63(3), 1361–1374.

    Google Scholar 

  • Rambabu, S., Gayatri, V. D., Ramakrishna, S. S. V. S., Rama, G. V., & AppaRao, B. V. (2013). Sensitivity of movement and intensity of severe cyclone AILA to the physical processes. Journal of earth system science, 122(4), 979–999.

    Google Scholar 

  • Rappaport, E. N., Franklin, J. L., Avila, L. A., Baig, S. R., Beven, J. L., Blake, E. S., et al. (2009). Advances and challenges at the National Hurricane Center. Weather and Forecasting, 24(2), 395–419.

    Google Scholar 

  • Rogers, R., Chen, S., Tenerelli, J., Willoughby, H., et al. (2006). The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bulletin of the American Meteorological Society, 87(11), 1523–1537.

    Google Scholar 

  • Rotunno, R., & Emanuel, K. A. (1987). An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. Journal of the Atmospheric Sciences, 44(3), 542–561.

    Google Scholar 

  • Roy Bhowmik, S. K. (2013). Operational Numerical Weather Prediction (NWP) System of IMD. Retrieved from: http://www.imd.gov.in/doc/nwpsystem.pdf. Accessed 13 Mar 2020.

  • Saikumar, P. J., & Ramashri, T. (2017). Impact of physics parameterization schemes in the simulation of Laila cyclone using the advanced mesoscale weather research and forecasting model. International Journal of Applied Engineering Research, 12(22), 12645–12651.

    Google Scholar 

  • Singh, K. S., & Bhaskaran, P. K. (2017). Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model. Journal of Atmospheric and Solar-Terrestrial Physics, 165, 10–24.

    Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., & Duda, M. (2008). A Description of the Advanced Research WRF Version 3 (technical note NCAR/TN-475 + STR). Boulder, CO: National Center for Atmospheric Research.

    Google Scholar 

  • Smith, R. K., & Thomsen, G. L. (2010). Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quarterly Journal of the Royal Meteorological Society, 136(652), 1671–1685.

    Google Scholar 

  • Srinivas, C. V., Bhaskar Rao, D. V., Yesubabu, V., Baskaran, R., & Venkatraman, B. (2013). Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Quarterly Journal of the Royal Meteorological Society, 139(676), 1810–1825.

    Google Scholar 

  • Srinivas, C. V., Venkatesan, R., Rao, D. B., & Prasad, D. H. (2007). Numerical simulation of Andhra severe cyclone (2003): Model sensitivity to the boundary layer and convection parameterization. Atmospheric and oceanic (pp. 1465–1487). Basel: Birkhäuser.

    Google Scholar 

  • Srinivas, C. V., Yesubabu, V., Prasad, D. H., Prasad, K. H., Greeshma, M. M., Baskaran, R., et al. (2018). Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics. Atmospheric Research, 210, 66–82.

    Google Scholar 

  • Stensrud, D. J. (2007). Parameterization schemes: Keys to understanding numerical weather prediction models, 459. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Stull, R. B. (1988). An introduction to boundary layer meteorology (p. 680). Dordrecht, Holland: Kluwer.

    Google Scholar 

  • Sukoriansky, S., Galperin, B., & Perov, V. (2005). Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorology, 117(2), 231–257.

    Google Scholar 

  • Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme Part II: Implementation of a new snow parameterization. Monthly Weather Review, 136(12), 5095–5115.

    Google Scholar 

  • Wada, A., & Usui, N. (2010). Impacts of oceanic preexisting conditions on predictions of Typhoon Hai-Tang in 2005. Advances in Meteorology, 2010, 756071. https://doi.org/10.1155/2010/756071.

  • Zhang, D., & Anthes, R. A. (1982). A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. Journal of Applied Meteorology, 21(11), 1594–1609.

    Google Scholar 

  • Zhang, J. A., Black, P. G., French, J. R., & Drennan, W. M., (2008). First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophysical Research Letters, 35, L14813. https://doi.org/10.1029/2008GL034374.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director of IGCAR for his keen interest and support for the study. The first author is grateful to Homi Bhabha National Institute for providing a research fellowship. The India Meteorological Department is acknowledged for the open access of best track and intensity estimates and the DWR reflectivity composites used in the analysis. The authors also acknowledge the Colorado State University for providing the CIRA multi-satellite images and National Aeronautics and Space Administration for providing the MERRA2 reanalysis dataset. The authors acknowledge the anonymous reviewers for their critical reviews and valuable comments which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Srinivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, J.R., Srinivas, C.V., Mohan, P.R. et al. Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model. Pure Appl. Geophys. 177, 5523–5550 (2020). https://doi.org/10.1007/s00024-020-02572-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02572-3

Keywords