Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Well-posedness, theoretical and numerical stability results of a memory-type porous thermoelastic system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a one-dimensional thermoelastic porous system with memory effect. We establish the existence and uniqueness result using the Faedo Galerkin approximations method. Then, we prove a general decay result under a very general assumption on the relaxation function and for suitable initial data with enough regularities. In order to validate our theoretical results, we discretize our system using hybrid numerical scheme and we present several numerical experiments and tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goodman, M., Cowin, S.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  Google Scholar 

  2. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)

    Article  MathSciNet  Google Scholar 

  3. Ieşan, D., Quintanilla, R.: A theory of porous thermoviscoelastic mixtures. J. Therm. Stresses 30(7), 693–714 (2007)

    Article  MathSciNet  Google Scholar 

  4. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, vol. 398. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  5. Santos, M., Júnior, D.A.: On porous-elastic system with localized damping. Z. Angew. Math. Phys. 67(3), 63 (2016)

    Article  MathSciNet  Google Scholar 

  6. Han, Z.-J., Xu, G.-Q.: Exponential decay in non-uniform porous-thermo-elasticity model of Lord–Shulman type. Discrete Contin. Dyn. Syst. B 17(1), 57–77 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Said-Houari, B., Messaoudi, S.A.: Decay property of regularity-loss type of solutions in elastic solids with voids. Appl. Anal. 92(12), 2487–2507 (2013)

    Article  MathSciNet  Google Scholar 

  8. Messaoudi, S.A., Fareh, A.: General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal. Theory Methods Appl. 74(18), 6895–6906 (2011)

    Article  MathSciNet  Google Scholar 

  9. Messaoudi, S.A., Fareh, A.: General decay for a porous-thermoelastic system with memory: the case of nonequal speeds. Acta Math. Sci. 33(1), 23–40 (2013)

    Article  MathSciNet  Google Scholar 

  10. Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87(4), 451–464 (2008)

    Article  MathSciNet  Google Scholar 

  11. Apalara, T.A.: General decay of solutions in one-dimensional porous-elastic system with memory. J. Math. Anal. Appl. 469(2), 457–471 (2019)

    Article  MathSciNet  Google Scholar 

  12. Apalara, T.A.: A general decay for a weakly nonlinearly damped porous system. J. Dyn. Control Syst. 25(3), 311–322 (2019)

    Article  MathSciNet  Google Scholar 

  13. Feng, B., Apalara, T.A.: Optimal decay for a porous elasticity system with memory. J. Math. Anal. Appl. 470(2), 1108–1128 (2019)

    Article  MathSciNet  Google Scholar 

  14. Apalara, T.A.: Exponential decay in one-dimensional porous dissipation elasticity. Q. J. Mech. Appl. Math. 70(4), 363–372 (2017)

    Article  MathSciNet  Google Scholar 

  15. Apalara, T.A.: General stability result of swelling porous elastic soils with a viscoelastic damping. Z. Angew. Math. Phys. 71(6), 1–10 (2020)

    Article  MathSciNet  Google Scholar 

  16. Santos, M., Almeida Júnior, D., Cordeiro, S.: Energy decay for a porous-elastic system with nonlinear localized damping. Z. Angew. Math. Phys. 73(1), 1–21 (2022)

    Article  MathSciNet  Google Scholar 

  17. Apalara, T.A.: On the stabilization of a memory-type porous thermoelastic system. Bull. Malays. Math. Sci. Soc. 1–16 (2019)

  18. Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mu, J.E., Racke, R., et al.: Magneto-thermo-elasticity–large-time behavior for linear systems. Adv. Differ. Equ. 6(3), 359–384 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Arnol’d, V.I.: Mathematical methods of classical mechanics, vol. 60. Springer, New York (2013)

    Google Scholar 

Download references

Acknowledgements

The authors thank King Fahd University of Petroleum and Minerals (KFUPM) and University of Lille for their continuous support. The authors also thank the referee for his/her valuable comments and corrections which improved a lot this work. This work is supported by KFUPM under project # SB201026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel M. Al-Mahdi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mahdi, A.M., Kafini, M., Hassan, J.H. et al. Well-posedness, theoretical and numerical stability results of a memory-type porous thermoelastic system. Z. Angew. Math. Phys. 73, 94 (2022). https://doi.org/10.1007/s00033-022-01733-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01733-9

Keywords

Mathematics Subject Classification