Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Adaptive Kernel for the RBF Neural Networks

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel adaptive kernel for the radial basis function neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed framework dynamically adapts the weights of the participating kernels using the gradient descent method, thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation, namely nonlinear system identification, patter classification and function approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. W. Aftab, M. Moinuddin, M.S. Shaikh, A novel kernel for RBF based neural networks, in Abstract and Applied Analysis 2014 (2014). doi:10.1155/2014/176253

  2. S.H.A. Ali, K. Fukase, S. Ozawa, A fast online learning algorithm of radial basis function network with locality sensitive hashing. Evol. Syst. 2016, 1–14 (2016)

    Google Scholar 

  3. G.S. Babu, S. Suresh, Meta-cognitive RBF network and its projection based learning algorithm for classification problems. Appl. Soft Comput. 13(1), 654–666 (2013)

    Article  MathSciNet  Google Scholar 

  4. M. Barakat, D. Lefebvre, M. Khalil, F. Druaux, O. Mustapha, Parameter selection algorithm with self adaptive growing neural network classifier for diagnosis issues. Int. J. Mach. Learn. Cybern. 4(3), 217–233 (2013)

    Article  Google Scholar 

  5. S. Chen, C.F. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

    Article  Google Scholar 

  6. W. Chen, Z.J. Fu, C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods (Springer, Heidelberg, 2014)

    Book  MATH  Google Scholar 

  7. D.P.F. Cruz, R.D. Maia, L.A. da Silva, L.N. de Castro, BeeRBF: a bee-inspired data clustering approach to design RBF neural network classifiers. Neurocomputing 172, 427–437 (2016)

    Article  Google Scholar 

  8. V. Elanayar, Y.C. Shin et al., Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Netw. 5(4), 594–603 (1994)

    Article  Google Scholar 

  9. M.J. Er, S. Wu, J. Lu, H.L. Toh, Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Netw. 13(3), 697–710 (2002)

    Article  Google Scholar 

  10. L. Fu, M. Zhang, H. Li, Sparse RBF networks with multi-kernels. Neural Process. Lett. 32(3), 235–247 (2010)

    Article  Google Scholar 

  11. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  12. M.A. Halali, V. Azari, M. Arabloo, A.H. Mohammadi, A. Bahadori, Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines. J. Taiwan Inst. Chem. Eng. 58, 189–202 (2016)

    Article  Google Scholar 

  13. H.G. Han, J.F. Qiao, Adaptive computation algorithm for RBF neural network. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 342–347 (2012)

    Article  Google Scholar 

  14. S.O. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, Upper Saddle River, NJ, 1994)

    MATH  Google Scholar 

  15. M.M. Li, B. Verma, Nonlinear curve fitting to stopping power data using RBF neural networks. Expert Syst. Appl. 45, 161–171 (2016)

    Article  Google Scholar 

  16. R.P. Lippmann, Pattern classification using neural networks. IEEE Commun. Mag. 27(11), 47–50 (1989)

    Article  Google Scholar 

  17. K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  18. A.D. Niros, G.E. Tsekouras, A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach. Fuzzy Sets Syst. 193, 62–84 (2012)

    Article  MathSciNet  Google Scholar 

  19. S.K. Oh, W.D. Kim, W. Pedrycz, Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: design and analysis. Int. J. Gen. Syst. 45(4), 434–454 (2016)

  20. N.R. Pal, D. Chakraborty, Mountain and subtractive clustering method: improvements and generalizations. Int. J. Intell. Syst. 15(4), 329–341 (2000)

    Article  MATH  Google Scholar 

  21. H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  22. D. Psaltis, A. Sideris, A. Yamamura et al., A multilayered neural network controller. IEEE Control Syst. Mag. 8(2), 17–21 (1988)

    Article  Google Scholar 

  23. P.D. Reiner, Algorithms for Optimal Construction and Training of Radial Basis Function Neural Networks, PhD thesis (Auburn University, 2015)

  24. A. Tatar, S. Naseri, N. Sirach, M. Lee, A. Bahadori, Prediction of reservoir brine properties using radial basis function (RBF) neural network. Petroleum 1(4), 349–357 (2015)

    Article  Google Scholar 

  25. D. Wettschereck, T. Dietterich, Improving the performance of radial basis function networks by learning center locations, in Advances in Neural Information Processing Systems, vol. 4 ed. by J. E. Moody, S. J. Hanson and R. P. Lippmann (Morgan Kaufmann, San Mateo, CA, 1992), pp. 1133–1140

  26. J. Wu, J. Long, M. Liu, Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148, 136–142 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Naseem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Naseem, I., Togneri, R. et al. A Novel Adaptive Kernel for the RBF Neural Networks. Circuits Syst Signal Process 36, 1639–1653 (2017). https://doi.org/10.1007/s00034-016-0375-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0375-7

Keywords