Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Results on Noncommutative and Commutative Polynomial Identity Testing

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract.

Using ideas from automata theory, we design the first polynomial deterministic identity testing algorithm for the sparse noncommutative polynomial identity testing problem. Given a noncommuting black-box polynomial \(f \in {\mathbb F}\{x_{1},\ldots,x_n\}\) of degree d with at most t monomials, where the variables x i are noncommuting, we give a deterministic polynomial identity test that checks if \(C \equiv 0\) and runs in time polynomial in dn, |C|, and t. Our algorithm evaluates the black-box polynomial for x i assigned to matrices over \({\mathbb{F}}\) and, in fact, reconstructs the entire polynomial f in time polynomial in n, d and t.

We apply this idea also to the reconstruction of black-box noncommuting algebraic branching programs (considered by Nisan (1995) and Raz and Shpilka (2005)) and obtain some results and connections to the problem of exact learning of noncommuting ABPs.

Finally, we turn to commutative identity testing and explore the complexity of the problem when the coefficients of the input polynomial come from an arbitrary finite commutative ring with unity whose elements are uniformly encoded as strings and the ring operations are given by an oracle. We show that several algorithmic results for polynomial identity testing over fields also hold when the coefficients come from such finite rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arvind.

Additional information

Manuscript received 22 December 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvind, V., Mukhopadhyay, P. & Srinivasan, S. New Results on Noncommutative and Commutative Polynomial Identity Testing. comput. complex. 19, 521–558 (2010). https://doi.org/10.1007/s00037-010-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-010-0299-8

Keywords.

Subject classification.