Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Construction of G-Invariant Finite Tight Frames

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We give a complete classification of the finite tight frames which are G-invariant, i.e., invariant under the unitary action of a group G. This result is constructive, and we use it to consider a number of examples. In particular, we determine the minimum number of generators for a tight frame for the orthogonal polynomials on an n-gon or cube, which is invariant under the symmetries of the weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2—-4), 357–385 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broome, H., Waldron, S.: On the construction of highly symmetric tight frames and complex polytopes. Linear Algebra Appl. 439(12), 4135–4151 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35(1), 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casazza, P.G., Kutyniok, G. (eds.): Finite Frames. Applied and Numerical Harmonic Analysis (Theory and Applications). Birkhäuser, New York (2013)

  5. Casazza, P.G., Fickus, M., Heinecke, A., Wang, Y., Zhou, Z.: Spectral tetris fusion frame constructions. J. Fourier Anal. Appl. 18(4), 828–851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (part i). IEEE Signal Process. Mag. 24, 86–104 (2007)

    Google Scholar 

  7. Chien, T.-Y., Waldron, S.: A classification of the harmonic frames up to unitary equivalence. Appl. Comput. Harmon. Anal. 30(3), 307–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (2003)

    MATH  Google Scholar 

  9. Dunkl, C.F.: Orthogonal polynomials on the hexagon. SIAM J. Appl. Math. 47(2), 343–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, D.: Classification of finite group-frames and super-frames. Can. Math. Bull. 50(1), 85–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  12. Kane, R.: Reflection Groups and Invariant Theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5. Springer, New York (2001)

    Book  Google Scholar 

  13. Lehrer, G.I., Taylor, D.E.: Unitary Reflection Groups. Australian Mathematical Society Lecture Series, vol. 20. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  14. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171–2180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51(4), 042203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Sequence A001399. http://oeis.org

  17. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vale, R. Waldron, S.: The Vertices of the Platonic Solids are Tight Frames. In: Advances in Constructive Approximation: Vanderbilt 2003, Mod. Methods Math., pp. 495–498. Nashboro Press, Brentwood, TN (2004)

  19. Vale, R., Waldron, S.: Tight frames and their symmetries. Constr. Approx. 21(1), 83–112 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Vale, R., Waldron, S.: Tight frames generated by finite nonabelian groups. Numer. Algorithms 48(1–3), 11–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Waldron, S.: Finite Frames. Group Frames, pp. 171–191. Birkhäuser, New York (2013)

    Book  MATH  Google Scholar 

  22. Waldron, S.: An Introduction to Finite Tight Frames. Birkhäuser, New York (2016)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Steven Sam for pointing out that for a general complex reflection group G, (4.15) describes how \(S_N\) decomposes as a sum of irreducible representations of G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayne Waldron.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vale, R., Waldron, S. The Construction of G-Invariant Finite Tight Frames. J Fourier Anal Appl 22, 1097–1120 (2016). https://doi.org/10.1007/s00041-015-9443-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9443-9

Keywords

Mathematics Subject Classification