Abstract
We give a complete classification of the finite tight frames which are G-invariant, i.e., invariant under the unitary action of a group G. This result is constructive, and we use it to consider a number of examples. In particular, we determine the minimum number of generators for a tight frame for the orthogonal polynomials on an n-gon or cube, which is invariant under the symmetries of the weight.
Similar content being viewed by others
References
Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2—-4), 357–385 (2003)
Broome, H., Waldron, S.: On the construction of highly symmetric tight frames and complex polytopes. Linear Algebra Appl. 439(12), 4135–4151 (2013)
Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35(1), 1–31 (2011)
Casazza, P.G., Kutyniok, G. (eds.): Finite Frames. Applied and Numerical Harmonic Analysis (Theory and Applications). Birkhäuser, New York (2013)
Casazza, P.G., Fickus, M., Heinecke, A., Wang, Y., Zhou, Z.: Spectral tetris fusion frame constructions. J. Fourier Anal. Appl. 18(4), 828–851 (2012)
Chebira, A., Kovačević, J.: Life beyond bases: the advent of frames (part i). IEEE Signal Process. Mag. 24, 86–104 (2007)
Chien, T.-Y., Waldron, S.: A classification of the harmonic frames up to unitary equivalence. Appl. Comput. Harmon. Anal. 30(3), 307–318 (2011)
Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA (2003)
Dunkl, C.F.: Orthogonal polynomials on the hexagon. SIAM J. Appl. Math. 47(2), 343–351 (1987)
Han, D.: Classification of finite group-frames and super-frames. Can. Math. Bull. 50(1), 85–96 (2007)
James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, New York (2001)
Kane, R.: Reflection Groups and Invariant Theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5. Springer, New York (2001)
Lehrer, G.I., Taylor, D.E.: Unitary Reflection Groups. Australian Mathematical Society Lecture Series, vol. 20. Cambridge University Press, Cambridge (2009)
Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2171–2180 (2004)
Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51(4), 042203 (2010)
Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Sequence A001399. http://oeis.org
Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)
Vale, R. Waldron, S.: The Vertices of the Platonic Solids are Tight Frames. In: Advances in Constructive Approximation: Vanderbilt 2003, Mod. Methods Math., pp. 495–498. Nashboro Press, Brentwood, TN (2004)
Vale, R., Waldron, S.: Tight frames and their symmetries. Constr. Approx. 21(1), 83–112 (2005)
Vale, R., Waldron, S.: Tight frames generated by finite nonabelian groups. Numer. Algorithms 48(1–3), 11–27 (2008)
Waldron, S.: Finite Frames. Group Frames, pp. 171–191. Birkhäuser, New York (2013)
Waldron, S.: An Introduction to Finite Tight Frames. Birkhäuser, New York (2016)
Acknowledgments
We would like to thank Steven Sam for pointing out that for a general complex reflection group G, (4.15) describes how \(S_N\) decomposes as a sum of irreducible representations of G.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Peter G. Casazza.
Rights and permissions
About this article
Cite this article
Vale, R., Waldron, S. The Construction of G-Invariant Finite Tight Frames. J Fourier Anal Appl 22, 1097–1120 (2016). https://doi.org/10.1007/s00041-015-9443-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00041-015-9443-9
Keywords
- Finite tight frame
- G-invariant frame
- Group frame
- Complex reflection group
- Orthogonal polynomials on a regular polygon
- Orthogonal polynomials on a cube