Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crowd analysis: a survey

  • SPECIAL ISSUE PAPER
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In the year 1999 the world population reached 6 billion, doubling the previous census estimate of 1960. Recently, the United States Census Bureau issued a revised forecast for world population showing a projected growth to 9.4 billion by 2050 (US Census Bureau, http://www.census.gov/ipc/www/worldpop.html). Different research disci- plines have studied the crowd phenomenon and its dynamics from a social, psychological and computational standpoint respectively. This paper presents a survey on crowd analysis methods employed in computer vision research and discusses perspectives from other research disciplines and how they can contribute to the computer vision approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 2004-2005, 2005-2006, CIFE, Seed, Project, Stanford, University: http://eil.stanford.edu/egress/

  2. Adang, O.M., Stott, C.: A European study of the interaction between police and crowds of foreign nationals considered to pose a risk to public order. http://policestudies.homestead.com/Euro2004.html

  3. Advisor: http://advisor.matrasi-tls.fr/

  4. AEA, Techology: a technical summary of the aea egress code. Technical Report 1 (2002)

  5. Andrade, E., Fisher, R.: Simulation of crowd problems for computer vision. In: First International Workshop on Crowd Simulation, vol. 3, pp. 71–80 (2005)

  6. Andrade, E., Fisher, R.: Hidden Markov models for optical flow analysis in crowds. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 01, pp. 460–463. IEEE Computer Society Washington, (2006)

  7. Andrade, E., Fisher, R.: Modelling crowd scenes for event detection. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 01, pp. 175–178. IEEE Computer Society Washington, DC (2006)

  8. Andrade, E.L., Blunsden, S., Fisher, R.B.: Performance analysis of event detection models in crowded scenes. In: Proceedings of Workshop on Towards Robust Visual Surveillance Techniques and Systems at Visual Information Engineering 2006, pp. 427–432. Bangalore, India (2006)

  9. Antonini, G., Bierlaire, M., Weber, M.: Simulation of pedestrian behaviour using a discrete choice model calibrated on actual motion data. In: 4th STRC Swiss Transport Research Conference. Ascona (2004)

  10. Antonini, G., Venegas, S., Thiran J.P., Bierlaire, M.: A discrete choice pedestrian behaviour model in visual tracking systems. In: Advanced Concepts for Intelligent Vision Systems, pp. 273–280. Brussels, Belgium (2004)

  11. Banarjee, S., Grosan, C., Abarha, A.: Emotional ant based modeling of crowd dynamics. In: Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05), pp. 279–286 (2005)

  12. Behave: http://www.homepages.informatics.ed.ac.uk/rbf/BEHAVE/

  13. Blackman, S.: Multiple hypothesis tracking for multiple target tracking. Aerospace Electron. Syst. Mag. IEEE 19(1), 5–18 (2004)

    Article  Google Scholar 

  14. Boghossian, B., Velastin, S.: Motion-based machine vision techniques for the management of large crowds. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, vol. 2 (1999)

  15. Brenner, M., Wijermans, N., Nussle, T., de Boer, B.: Simulating and controlling civilian crowds in robocup rescue. In: Proceedings of RoboCup 2005: Robot Soccer World Cup IX, Osaka (2005)

  16. Broggi, A., Bertozzi, M., Fascioli, A., Sechi, M.: Shape-based pedestrian detection. In: Proceedings of the IEEE Intelligent Vehicles Symposium 2000. Dearbon (MI), USA (2000)

  17. Brostow, G., Cipolla, R.: Unsupervised Bayesian detection of independent motion in crowds. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 594–601. IEEE Computer Society Washington, DC, USA (2006)

  18. Cai, Y., de Freitas, N., Little, J.J.: Robust visual tracking for multiple targets. In: European Conference on Computer Vision, LNCS, vol. 3954, pp. 107–118. Springer, Heidelberg (2006)

  19. Chan, M.T., Hoogs, A., Bhotika, R., Perera, A., Schmiederer, J., Doretto, G.: Joint recognition of complex events and track matching. In: CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1615–1622. IEEE Computer Society, Washington, DC, USA (2006). doi:10.1109/CVPR.2006.160

  20. Chang, T., Gong, S., Ong, E.: Tracking multiple people under occlusion using multiple cameras. In: British Machine Vision Conference, pp. 566–575 (2000)

  21. Chu, J., Li, J., Xu, M., Zhao, L.: Simulating escape panic based on the mechanism of asymmetric information distribution. In: Complex Systems Summer School Final Project Papers. Santa Fe Institute, Santa Fe (2005).

  22. Crowd, Dynamics: http://www.crowddynamics.com/

  23. Crowd, MAGS: http://www2.ift.ulaval.ca/~muscamags/Dnd-crowdmags-project.htm

  24. Cupillard, F., Bremond, F., Thonnat, M.: Behaviour recognition for individuals, groups of people and crowd. IEE Seminar Digests 7 (2003)

  25. Cupillard, F., Bremond, F., Thonnat, M., INRIA, F.: Group behavior recognition with multiple cameras. Applications of Computer Vision, 2002 (WACV 2002). In: Proceedings of Sixth IEEE Workshop, pp. 177–183 (2002)

  26. Davies, A., Yin, J., Velastin, S.: Crowd monitoring using image processing. Electron. Commun. Eng. J. 7(1), 37–47 (1995)

    Article  Google Scholar 

  27. Dong, L., Parameswaran, V., Ramesh, V., Zoghlami, I.: Fast Crowd Segmentation Using Shape Indexing. Rio de Janeiro, Brazil (2007)

    Google Scholar 

  28. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering (2000)

  29. Elgammal, A., Davis, L.: Probabilistic framework for segmenting people under occlusion. In: Eighth IEEE International Conference on Computer Vision, 2001. Proceedings of ICCV 2001, vol. 2, pp. 145–152 (2001)

  30. FHWA.: Traffic analysis tools primer,traffic analysis toolbox (1) (2004). http://ops.fhwa.dot.gov/trafficanalysistools/tat-vol1/index

  31. Gabriel, P., Verly, J., Piater, J., Genon, A.: The state of the art in multiple object tracking under occlusion in video sequences. Advanced Concepts for Intell. Vis. Syst., pp. 166–173 (2003)

  32. Han, M., Xu, W., Tao, H., Gong, Y.: An algorithm for multiple object trajectory tracking. Computer Vision and Pattern Recognition, 2004. In: CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference, vol. 1 (2004)

  33. Heisele B., Woehler C. (1998) Motion-based recognition of pedestrians. In: Proceedings of Fourteenth International Conference on Pattern Recognition, 1998, vol. 2, pp. 1325–1330 (1998)

  34. Helbing, D.: Models for pedestrian behavior (1992). http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/9805089

  35. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Lett. Nat. 407, 487–490 (2000)

    Article  Google Scholar 

  36. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  37. Helbing, D., Molnar, P.: Self-organization phenomena in pedestrian crowds (1997). http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/9806152

  38. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst., Man Cybernet. C Appl. Rev. 34(3), 334–352 (2004)

    Article  Google Scholar 

  39. Huang, C., Ai, H., Li, Y., Lao, S.: Vector boosting for rotation invariant multi-view face detection. In: Tenth IEEE Inter- national Conference on Computer Vision, vol. 1, pp. 446–453 (2005)

  40. Huang X., Li L., Sim T. (2004) Stereo-based human head detection from crowd scenes. In: International Conference on Image Processing, 2004. ICIP’04, Vol. 2, pp. 1353–1356

  41. Hughes, R.: A continuum theory for the flow of pedestrians. Trans. Res. B Methodol. 36(6), 507–535 (2002)

    Article  Google Scholar 

  42. Inria: http://www.inria.fr/rapportsactivite/RA2005/orion/uid1.html

  43. Isard, M., Blake, A.: A mixed-state CONDENSATION tracker with automatic model-switching. In: IEEE International Conference on Computer Vision, pp. 107–112 (1998). http://citeseer.ist.psu.edu/isard98mixedstate.html

  44. ISCAPS: http://www.iscaps.reading.ac.uk/home.htm

  45. Jones, M., Viola, P.: Fast multi-view face detection. Mitsubishi Electric Research Lab TR-20003-96 (2003)

  46. Kang, H., Kim, D., Bang, S.: Real-time multiple people tracking using competitive condensation. Proc. Int. Conf. Pattern Recogn. 1, 413–416 (2002)

    Google Scholar 

  47. Karlsson, R., Gustafsson, F.: Monte Carlo data association for multiple target tracking. Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE, vol. 1 (2001)

  48. Khan, S.M., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: 9th European Conference on Computer Vision, LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006)

  49. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1805–1819 (2005)

    Article  Google Scholar 

  50. Kim, K., Davis, L.S.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: European Conference on Computer Vision, LNCS, vol. 3953, pp. 98–109. Springer, Heidelberg (2006)

  51. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Appl. 312(1–2), 260–276 (2002)

    Article  MATH  Google Scholar 

  52. Kirkland, J., Maciejewski, A.: A simulation of attempts to influence crowd dynamics. IEEE Int. Conf. Syst. Man Cybernet. 4328–4333 (2003)

  53. Koller-Meier, E., Ade, F.: Tracking multiple objects using the Condensation algorithm. Robot. Auton. Syst. 34(2-3), 93–105 (2001)

    Article  MATH  Google Scholar 

  54. Kong, D., Gray, D., Tao, H.: Counting Pedestrians in crowds using viewpoint invariant training. In: British Machine Vision Conference (2005)

  55. Kong, D., Gray, D., Tao, H.: A viewpoint invariant approach for crowd counting. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), vol. 03, pp. 1187–1190 (2006)

  56. Kretz, T., Schreckenberg, M.: F.a.s.t.—floor field—and agent-based simulation tool (2006)

  57. Legion: http://www.legion.biz/about/index.html

  58. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. CVPR 2005. 1 (2005)

  59. Li, S.Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.: Statistical learning of multi-view face detection. In: Proceedings of the 7th European Conference on Computer Vision-Part IV, pp. 67–81. Springer, London (2002)

  60. Lin, S., Chen, J., Chao, H.: Estimation of number of people in crowded scenes using perspective transformation. IEEE Trans. Syst. Man Cybernet. A 31(6), 645–654 (2001)

    Article  Google Scholar 

  61. Ma, R., Li, L., Huang, W., Tian, Q.: On pixel count based crowd density estimation for visual surveillance. IEEE Conf. Cybernet. Intell. Syst. 1 (2004)

  62. Marana, A., da Costa, L., Lotufo, R., Velastin, S.: On the efficacy of texture analysis for crowd monitoring. In: Proceedings of the International Symposium on Computer Graphics, Image Processing, and Vision, vol. 00, p. 354 (1998)

  63. Marana, A., Da Fontoura Costa, L., Lotufo, R., Velastin, S.: Estimating crowd density with Minkowski fractal dimension. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999. ICASSP’99. vol. 6, 3521–3524 (1999)

  64. Marana, A., Velastin, S., Costa, L., Lotufo, R.: Estimation of crowd density using image processing. In: IEE Colloquium on Image Processing for Security Applications (Digest No: 1997/074), p. 11 (1997)

  65. Marana, A., Velastin, S., Costa, L., Lotufo, R.: Automatic estimation of crowd density using texture. Safety Sci. 28(3), 165–175 (1998)

    Article  Google Scholar 

  66. Marques, J., Jorge, P., Abrantes, A., Lemos, J.: Tracking groups of Pedestrians in video sequences. IEEE 2003 Conf. Comput. Vis. Pattern Recogn. Workshop 9, 101 (2003)

    Article  Google Scholar 

  67. Mathes, T., Piater, J.: Robust non-rigid object tracking using point distribution models. Bri. Mach. Vis. Conf. 2 (2005)

  68. Maurin, B., Masoud, O., Papanikolopoulos, N.: Monitoring crowded traffic scenes. In: Proceedings of The IEEE 5th International Conference on Intelligent Transportation Systems, 2002. pp. 19–24 (2002)

  69. McKenna, S., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking groups of people. Comput. Vis. Image Understanding 80(1), 42–56 (2000)

    Article  MATH  Google Scholar 

  70. Mittal, A., Davis, L.: M 2 tracker: a multi-view approach to segmenting and tracking people in a cluttered scene. Int. J. Comput. Vis. 51(3), 189–203 (2003)

    Article  Google Scholar 

  71. Musse, S., Thalmann, D.: A model of human crowd behavior: group inter-relationship and collision detection analysis. Proc. Workshop Comput. Anim. Simul. Eurograph. 97, 39–51 (1997)

    Google Scholar 

  72. Okuma, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A boosted particle filter: Multitarget detection and tracking. Eur. Conf. Comput. Vis. 1, 28–39 (2004)

    Google Scholar 

  73. Pan, X., Han, C., Dauber, K., Law, K.: Human and social behavior in computational modeling and analysis of egress. Automation in Construction 15(4), 448–461 (2006)

    Article  Google Scholar 

  74. Polus, A., Schofer, J., Ushpiz, A.: Pedestrian Flow and Level of Service. J. Transportation Eng. 109(1), 46–56 (1983)

    Google Scholar 

  75. Prismatica: http://prismatica.king.ac.uk/

  76. Rahmalan, H., Nixon, M., Carter, J.: On crowd density estimation for surveillance. The Institution of Engineering and Technology Conference on Crime and Security, pp. 540C–545C (2006)

  77. Rasmussen, C., Hager, G.: Joint probabilistic techniques for tracking multi-part objects. Computer Vision and Pattern Recognition, 1998. In: Proceedings of 1998 IEEE Computer Society Conference, pp. 16–21 (1998)

  78. Reid, D.: An algorithm for tracking multiple targets. Automat. Contr. IEEE Trans. 24(6), 843–854 (1979)

    Article  Google Scholar 

  79. Reisman, P., Mano, O., Avidan, S., Shashua, A., Ltd, M., Jerusalem, I.: Crowd detection in video sequences. Intell. Vehicles Symp. IEEE, 66–71 (2004)

  80. R.R., C., Hughes, R.: Mathematical modelling of a mediaeval battle: the battle of agincourt. Math. Compute. Simul. 64(2), 259–269 (2004)

  81. Shashua, A., Gdalyahu, Y., Hayun, G.: Pedestrian detection for driving assistance systems: single-frame classification and system level performance. Intelligent Vehicles Symposium, 2004 IEEE pp. 1–6 (2004)

  82. Sidenbladh, H., Wirkander, S.: Tracking random sets of vehicles in terrain. In: Proceedings of 2003 IEEE Workshop on Multi-Object Tracking vol. 9, 98 (2003)

  83. Siebel, N., Maybank, S.: Fusion of multiple tracking algorithms for robust people tracking. In: European Conference on Computer Vision, pp. 373–387 (2002)

  84. Smith, K., Gatica-Perez, D., Odobez, J.: Using particles to track varying numbers of interacting people. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1–01, pp. 962–969 (2005)

  85. Spengler, M., Schiele, B.: Towards robust multi-cue integration for visual tracking. Mach. Vis. Appl. 14(1), 50–58 (2003)

    Article  Google Scholar 

  86. Sullivan, J., Carlsson, S.: Tracking and labelling of interacting multiple targets. In: European Conference on Computer Vision, LNCS, vol. 3953, pp. 619–632. Springer, Heidelberg (2006)

  87. Swets, D., Punch, B.: Genetic algorithms for object localization in a complex scene. In: IEEE International Conference on Image Processing, pp. 595–598 (1995)

  88. US Census Bureau: http://www.census.gov/ipc/www/worldpop.html

  89. Velastin, S., Yin, J., Davies, A., Vicencio-Silva, M., Allsop, R., Penn, A.: Automated measurement of crowd density and motion using imageprocessing. Road traffic monitoring and control, 1994. In: Seventh International Conference, pp. 127–132 (1994)

  90. Venegas, S., Knebel, S., Thiran, J.: Multi-object tracking using particle filter algorithm on the top-view plan. Technical report,LTS-REPORT-2004-003, EPFL (2004). http://infoscience.epfl.ch/getfile.py?mode=best&recid=87041

  91. Vu, V., Bremond, F., Thonnat, M.: Human behaviour visualisation and simulation for automatic video understanding. In: Proceedings of the 10th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG–2002), Plzen–Bory, Czech Republic, pp. 485–492 (2002)

  92. Wu, B., Nevatia, R.: Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1, 90–97 (2005)

  93. Wu, B., Nevatia, R.: Tracking of multiple, partially occluded humans based on static body part detection. In: CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 951–958 (2006)

  94. Yang, D., Gonzalez-Banos, H., Guibas, L.: Counting people in crowds with a real-time network of simple image sensors. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 122–129 (2003)

  95. Yin, J., Velastin, S., Davies, A.: Image Processing Techniques for Crowd Density Estimation Using a Reference Image. Proc. 2nd Asia-Pacific Conf. Comput. Vis. 3, 6–10 (1995)

    Google Scholar 

  96. Zhan, B., Remagnino, P., Velastin, S.: Analysing Crowd Intelligence. Second AIxIA Workshop on Ambient Intelligence (2005)

  97. Zhan, B., Remagnino, P., Velastin, S.: Mining paths of complex crowd scenes. Lecture Notes in Computer Science pp. 126–133 (2005). ISBN/ISSN 3-540-30750-8

  98. Zhan, B., Remagnino, P., Velastin, S.: Visual analysis of crowded pedestrain scenes. XLIII Congresso Annuale AICA, pp. 549–555 (2005)

  99. Zhao, T., Nevatia, R.: Tracking multiple humans in complex situations. Pattern Anal. Mach. Intell. IEEE Trans. 26(9), 1208–1221 (2004)

    Article  Google Scholar 

  100. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol. 2, II–406–II–413 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Remagnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, B., Monekosso, D.N., Remagnino, P. et al. Crowd analysis: a survey. Machine Vision and Applications 19, 345–357 (2008). https://doi.org/10.1007/s00138-008-0132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-008-0132-4

Keywords