Abstract
A neural architecture for texture classification running on the Graphics Processing Unit (GPU) under a stream processing model is presented in this paper. Textural features extraction is done in three different scales, it is based on the computations that take place on the mammalian primary visual pathway and incorporates both structural and color information. Feature vectors classification is done using a fuzzy neural network which introduces pattern analysis for orientation invariant texture recognition. Performance tests are done over a varying number of textures and the entire VisTex database. The intrinsic parallelism of the neural system led us to implement the whole architecture to run on GPUs, providing a speed-up between × 16 and × 25 for classifying textures of sizes 128 × 128 and 512 × 512 px with respect to an implementation on the CPU. A comparison of classification rates obtained with other methods is included and shows the great performance of the architecture. An average classification rate of 85.2% is obtained for 167 textures of size 512 × 512 px.
Similar content being viewed by others
References
Julesz, B., Bergen, J.R.: Textons, the fundamental elements in preattentive vision and perception of textures. In: Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 243–256. Morgan Kaufmann, San Francisco (1987)
Pothos V.K., Theoharatos C., Zygouris E., Economou G.: Distributional-based texture classification using non-parametric statistics. Pattern Anal. Appl. 11(2), 117–129 (2008)
Leung T., Malik J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)
Lazebnik S., Schmid C., Ponce J.: A sparse texture representation using local affine regions, IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005) student Member-Lazebnik, Svetlana and Senior Member-Schmid, Cordelia and Fellow-Ponce, Jean
Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC-3 610–621 (1973)
Varma M., Zisserman A.: Unifying statistical texture classification frameworks. Image Vis. Comput. 22(14), 1175–1183 (2004)
Speis A., Healey G.: Feature extraction for texture discrimination via random field models with random spatial interaction. IEEE Trans. Image Process. 5(4), 635–645 (1996)
Mellor M., Hong B.-W., Brady M.: Locally rotation, contrast, and scale invariant descriptors for texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 52–61 (2008)
Greenspan, H., Belongie, S., Goodman, R., Perona, P.: Rotation invariant texture recognition using a steerable pyramid. In: Proceedings of the International Conference on Pattern Recognition, pp. 162–167 (1994)
Tzagkarakis G., Beferull-lozano B., Tsakalides P.: Rotation-invariant texture retrieval with gaussianized steerable pyramids. IEEE Trans. Image Process. 15, 2702–2718 (2006)
Hubel D.H., Wiesel T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)
Obermayer K., Blasdel G.G.: Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neurosci. 13, 4114–4129 (1993)
Weliky M., Bosking W., Fitz Patrick D.: A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996)
Papathomas T., Kashi R., Gorea A.: A human vision based computational model for chromatic texture segregation. Syst. Man Cybern. Part B: Cybern. IEEE Trans. 27(3), 428–440 (1997)
Drimbarean A., Whelan P.F.: Experiments in colour texture analysis. Pattern Recogn. Lett. 22, 1161–1167 (2001)
Poirson A.B., Wandell B.A.: Pattern-color separable pathways predict sensitivity to simple colored patterns. Vis. Res. 36, 515–526 (1996)
Mojsilovic A., Mojsilovic’ R., Kovacevic J., Hu J., Safranek R.J., Member S., Member S., Ganapathy S.K.: Matching and retrieval based on the vocabulary and grammar of color patterns. IEEE Trans. Image Process. 9, 38–54 (2000)
Masquelier, T., Thorpe, S.J.: Unsupervised learning of visual features through spike timing dependent plasticity, PLoS Computat. Biol. 3(2), (2007)
Hawkins J., Blakeslee S.: On Intelligence. Holt Paperbacks, London (2005)
Antón-Rodríguez M., Díaz-Pernas F.J., Díez-Higuera J.F., Martínez-Zarzuela M., González-Ortega D., Boto-Giralda D.: Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion. Neurocomputing 72, 3713–3725 (2009)
Díaz-Pernas F.J., Antón-Rodríguez M., Díez-Higuera J.F., Martínez-Zarzuela M., González-Ortega D., Boto-Giralda D.: Texture classification of the entire brodatz database through an orientational-invariant neural architecture. In: Mira, J.M., Ferrández, J.M., Álvarez, J.R., Paz, F., Toledo, F.J. (eds) IWINAC (2). Lecture Notes in Computer Science, pp. 294–303. Springer, Heidelberg (2009)
Grossberg S., Williamson J.R.: A self-organizing neural system for learning to recognize textured scenes. Vis. Res. 39, 1385–1406 (1999)
Greenspan H.: Non-parametric texture learning. In: Nayar, S.K., Poggio, T. (eds) Early Visual Learning, Oxford University Press, Oxford (1996)
VisTex: Vision Texture Database (Massachusetts Institute of Technology), http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html, last visit, Feb. 2009 (1995)
Zomaya, A.Y. (eds): Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies. Springer, New York (2006)
Moore, G. E.: Cramming More Components onto Integrated Circuits. Reprinted from Electronics, vol. 38(8), pp.114 ff., April 19, 1965. Solid-State Circuits Newsletter, vol. 20(3) pp. 33–35. IEEE, New York (2006)
NVIDIA, NVIDIA CUDA Programming Guide 2.3 (2009)
Owens J.D., Houston M., Luebke D., Green S., Stone J.E., Phillips J.C.: GPU computing. Proc. IEEE 96(5), 879–899 (2008)
Fung, J., Mann, S.: Using graphics devices in reverse: Gpu-based image processing and computer vision. In: Multimedia and Expo, 2008 IEEE International Conference on, pp. 9–12 (2008)
Luebke, D.: Graphics hardware & gpu computing: past, present, and future. In: GI ’09: Proceedings of Graphics Interface 2009, pp. 1–1. Canadian Information Processing Society, Toronto (2009)
Owens J.D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A.E., Purcell T.J.: A survey of general-purpose computation on graphics hardware. Comp. Graphics Forum 26(1), 80–113 (2007)
Owens, J.: Streaming architectures and technology trends. In: Pharr, M. (ed.) GPU Gems 2, Chap. 29, pp. 457–470. Addison Wesley, New York (2005)
Segal, M., Akeley, K.: The design of the opengl graphics interface. Technical report. Silicon Graphics Computer Systems (1994)
Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H., Rosen D.B.: Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. Neural Netw. IEEE Trans. 3(5), 698–713 (1992)
Hodgkin A.L.: The Conduction of the Nerve Impulse. WB Saunders, Springfield (1964)
Hubel D.H., Livingstone M.S.: Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. Neuroscience 10(7), 2223–2237 (1990)
Schwartz S.H.: Visual Perception: A Clinical Orientation. 3rd edn. McGraw-Hill, New York (2004)
Díaz-Pernas, F.J., Antón-Rodríguez, M., Martínez-Zarzuela, M., Díez-Higuera, J.F., González-Ortega, D., Boto-Giralda, D.: Multiple scale neural architecture for enhancing regions in the colour image segmentation process. Exp. Syst. (2010, in press)
IPP: Intel Integrated Performance Primitives, Intel multimedia and data processing software library. Última visita (Feb. 2008)
Lefohn A., Kniss J., Owens J.: Implementing efficient parallel data structures on gpus. In: Pharr, M. (eds) GPU Gems 2, Chap. 33, pp. 521–544. Addison Wesley, New York (2005)
Harris M.: Mapping computational concepts to gpus. In: Pharr, M. (eds) GPU Gems 2, Chap. 31, pp. 493–508. Addison Wesley, New York (2005)
Woo M. Davis, Sheridan M.B.: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley, Boston (1999)
Kurmyshev E.V., Sanchez-Yanez R.E.: Comparative experiment with colour texture classifiers using the ccr feature space. Pattern Recogn. Lett. 26(9), 1346–1353 (2005)
Sengur A.: Wavelet transform and adaptive neuro-fuzzy inference system for color texture classification. Expert Syst. Appl. 34(3), 2120–2128 (2008)
Permuter H., Francos J., Jermyn I.: A study of gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recogn. 39(4), 695–706 (2006) Graph-based Representations
Mäenpää T., Pietikäinen M.: Classification with color and texture: jointly or separately?. Pattern Recogn. 37(8), 1629–1640 (2004)
Mäenpää, T., Pietikäinen, M., Viertola, J.: Separating color and pattern information for color texture discrimination. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 668–671 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martínez-Zarzuela, M., Díaz-Pernas, F.J., Antón-Rodríguez, M. et al. Multi-scale neural texture classification using the GPU as a stream processing engine. Machine Vision and Applications 22, 947–966 (2011). https://doi.org/10.1007/s00138-010-0254-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-010-0254-3