Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Soil-moisture estimation from TerraSAR-X data using neural networks

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Early prediction of natural disasters like floods and landslides is essential for reasons of public safety. This can be attained by processing Synthetic-Aperture Radar (SAR) images and retrieving soil-moisture parameters. In this article, TerraSAR-X product images are investigated in combination with a water-cloud model based on the Shi semi-empirical model to determine the accuracy of soil-moisture parameter retrieval. SAR images were captured between January 2008 and September 2010 in the vicinity of the city Maribor, Slovenia, at different incidence angles. The water-cloud model provides acceptable estimated soil-moisture parameters at bare or scarcely vegetated soil areas. However, this model is too sensitive to speckle noise; therefore, a pre-processing step for speckle-noise reduction is carried out. Afterwards, self-organizing neural networks (SOM) are used to segment the areas at which the performance of this model is poor, and at the same time neural networks are also used for a more accurate approximation of model parameters’ values. Ground-truth is measured using the Pico64 sensor located on the field, simultaneously with capturing SAR images, in order to enable the comparison and validation of the obtained results. Experimental results show that the proposed method outperforms the water-cloud model accuracy over all incidence angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baghdadi N., Holah N., Zribi M.: Soil moisture estimation using multiincidence and multi-polarization ASAR SAR data. Int. J. Remote Sens. 27(10), 1907–1920 (2006)

    Article  Google Scholar 

  2. Baghdadi N., Cerdan O., Zribi M., Auzet V., Darboux F., El Hajj M., Kheir R.B.: Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics: application to hydrological and erosion modelling. Hydrol. Process. 24(1), 9–20 (2008)

    Article  Google Scholar 

  3. Baghdadi N., Zribi M., Loumagne C., Ansart P., Anguela T.P.: Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sens. Environ. 112(12), 4370–4379 (2008)

    Article  Google Scholar 

  4. Baghdadi N., Boyer N., Todoroff P., El Hajj M., Bégué A.: Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote Sens. Environ. 113(8), 1724–1738 (2009)

    Article  Google Scholar 

  5. Baghdadi N., Camus P., Beaugendre N., Issa O.M., Zribi M., Desprats J.F., Rajot J.L., Abdallah C., Sannier C.: Estimating surface soil moisture from terrasar-x data over two small catchments in the Sahelian Part of Western Niger. Remote Sens. 3(6), 1266–1283 (2011)

    Article  Google Scholar 

  6. Bindlish R., Barros A.P.: Including vegetation scattering effects in radar based soil moisture estimation model. Remote Sens. Hydrol. 267, 354–361 (2000)

    Google Scholar 

  7. Brooker G. M.: Introduction to Sensors for Ranging and Imaging. SciTech Publishing, London (2009)

    Google Scholar 

  8. Dobson M.C., Ulaby F.T., Hallikainen M.T., El-Rayes M.A.: Microwave dielectric behaviour of wet soil, Part II: dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 23(1), 35–46 (1985)

    Article  Google Scholar 

  9. Dobson M.C., Ulaby F.T.: Active microwave soil moisture research. IEEE Trans. Geosci. Remote Sens. 24(1), 23–36 (1986)

    Article  Google Scholar 

  10. Du Y., Ulaby F.T., Dobson M.C.: Sensitivity to soil moisture by active and passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 38(1), 105–114 (2000)

    Article  Google Scholar 

  11. Dubois P.C., van Zyl J., Engman T.: Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 33(4), 915–926 (1995)

    Article  Google Scholar 

  12. Everitt B.S.: Cambridge Dictionary of Statistics. 3rd edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  13. Farifteh J., Vander Meer F., Atzbergerb C., Carranzaa E.J.M.: Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 110(1), 59–78 (2007)

    Article  Google Scholar 

  14. Fritz, T.: TerraSAR-X Ground Segment Level 1b Product Format Specification, Issue, 1.3, p. 257. http://sss.terrasar-x.dlr.de/pdfs/TX-GS-DD-3307.pdf, 10.12.2007

  15. Fumio H.: Econometrics. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  16. Fung A.K., Li Z., Chen K.S.: Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 30(2), 356–369 (1992)

    Article  Google Scholar 

  17. Fung A.K.: Microwave Scattering and Emission Models and their Applications. Artech House, Boston (1994)

    Google Scholar 

  18. Gleich D., Datcu M.: Wavelet-based despeckling of SAR images using Gauss–Markov random fields. IEEE Trans. Geosci. Remote Sens. 45(2), 4127–4143 (2007)

    Article  Google Scholar 

  19. Haykin S.: Neural Networks: a Comprehensive Foundation. Pearson Prentice Hall, New York (1999)

    MATH  Google Scholar 

  20. Hebar M., Gleich D., Cucej Z.: Auto-binomial model for SAR image despeckling and information extraction. IEEE Trans. Geosci. Remote Sens. 47(8), 2818–28359 (2009)

    Article  Google Scholar 

  21. Kohonen T.: Self-Organizing Maps. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  22. Kseneman M., Moline D.E., Gleich D., Datcu M.: Despeckling and Information Extraction from Synthetic Aperture Radar Images using GPU’s, ESA-EUSC (2009)

  23. Mattia F., Satalino G., Dente L., Pasquariello G.: Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Trans. Geosci. Remote Sens. 44(4), 900–912 (2006)

    Article  Google Scholar 

  24. Muller D.E.: A method for solving algebraic equations using an automatic computer. MTAC 10, 208–215 (1956)

    MATH  Google Scholar 

  25. Narayanan R.M., Hirsave P.P.: Soil moisture estimation models using SIR-C SAR data: a case study in New Hampshire, USA. Remote Sens. Environ. 75(3), 385–396 (2001)

    Article  Google Scholar 

  26. NVIDIA’s parallel computing Programming http://www.nvidia.com/object/cuda_home.html

  27. Oh Y., Kay Y.C.: Condition for precise measurement of soil surface roughness. IEEE Trans. Geosci. Remote Sens. 36(2), 691–695 (1998)

    Article  Google Scholar 

  28. Raney R.K., Freeman T., Hawkins R.W., Bamler R.: A plea for radar brightness. IGARSS ’94 2, 1090–1092 (1994)

    Google Scholar 

  29. Shi J., Wang J., Hsu A.Y., O’Neil P.E., Engman E.T.: Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 35(5), 1254–1266 (1997)

    Article  Google Scholar 

  30. Sikdar M., Cumming I.: A modified empirical model for soil moisture estimation in vegetated areas using SAR data. IGARSS ’94 2, 803–806 (1994)

    Google Scholar 

  31. TRIME-PICO64. http://www.imko.de/en/products/industrialmoisture/pico64

  32. Ulaby F.T., Moore R.K., Fung A.K.: Microwave Remote Sensing: Active and Passive. Radar Remote Sensing and Surface Scattering and Emission Theory, vol 2. Addison-Wesley, Massachusetts (1982)

    Google Scholar 

  33. Ulaby F.T., Moore R.K., Fung A.K.: Microwave Remote Sensing: Active and Passive. From Theory to Applications. Artech House, Boston (1986)

    Google Scholar 

  34. Veelenturf L.P.J.: Analysis and Applications of Artificial Neural Networks. Prentice Hall, London (1995)

    MATH  Google Scholar 

  35. Walessa M., Datcu M.: Model-based despeckling and information extraction from SAR images. IEEE Trans. Geosci. Remote Sens. 38(5), 2258–2269 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Kseneman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kseneman, M., Gleich, D. & Potočnik, B. Soil-moisture estimation from TerraSAR-X data using neural networks. Machine Vision and Applications 23, 937–952 (2012). https://doi.org/10.1007/s00138-011-0375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0375-3

Keywords