Abstract
Early prediction of natural disasters like floods and landslides is essential for reasons of public safety. This can be attained by processing Synthetic-Aperture Radar (SAR) images and retrieving soil-moisture parameters. In this article, TerraSAR-X product images are investigated in combination with a water-cloud model based on the Shi semi-empirical model to determine the accuracy of soil-moisture parameter retrieval. SAR images were captured between January 2008 and September 2010 in the vicinity of the city Maribor, Slovenia, at different incidence angles. The water-cloud model provides acceptable estimated soil-moisture parameters at bare or scarcely vegetated soil areas. However, this model is too sensitive to speckle noise; therefore, a pre-processing step for speckle-noise reduction is carried out. Afterwards, self-organizing neural networks (SOM) are used to segment the areas at which the performance of this model is poor, and at the same time neural networks are also used for a more accurate approximation of model parameters’ values. Ground-truth is measured using the Pico64 sensor located on the field, simultaneously with capturing SAR images, in order to enable the comparison and validation of the obtained results. Experimental results show that the proposed method outperforms the water-cloud model accuracy over all incidence angles.
Similar content being viewed by others
References
Baghdadi N., Holah N., Zribi M.: Soil moisture estimation using multiincidence and multi-polarization ASAR SAR data. Int. J. Remote Sens. 27(10), 1907–1920 (2006)
Baghdadi N., Cerdan O., Zribi M., Auzet V., Darboux F., El Hajj M., Kheir R.B.: Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics: application to hydrological and erosion modelling. Hydrol. Process. 24(1), 9–20 (2008)
Baghdadi N., Zribi M., Loumagne C., Ansart P., Anguela T.P.: Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields. Remote Sens. Environ. 112(12), 4370–4379 (2008)
Baghdadi N., Boyer N., Todoroff P., El Hajj M., Bégué A.: Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote Sens. Environ. 113(8), 1724–1738 (2009)
Baghdadi N., Camus P., Beaugendre N., Issa O.M., Zribi M., Desprats J.F., Rajot J.L., Abdallah C., Sannier C.: Estimating surface soil moisture from terrasar-x data over two small catchments in the Sahelian Part of Western Niger. Remote Sens. 3(6), 1266–1283 (2011)
Bindlish R., Barros A.P.: Including vegetation scattering effects in radar based soil moisture estimation model. Remote Sens. Hydrol. 267, 354–361 (2000)
Brooker G. M.: Introduction to Sensors for Ranging and Imaging. SciTech Publishing, London (2009)
Dobson M.C., Ulaby F.T., Hallikainen M.T., El-Rayes M.A.: Microwave dielectric behaviour of wet soil, Part II: dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 23(1), 35–46 (1985)
Dobson M.C., Ulaby F.T.: Active microwave soil moisture research. IEEE Trans. Geosci. Remote Sens. 24(1), 23–36 (1986)
Du Y., Ulaby F.T., Dobson M.C.: Sensitivity to soil moisture by active and passive microwave sensors. IEEE Trans. Geosci. Remote Sens. 38(1), 105–114 (2000)
Dubois P.C., van Zyl J., Engman T.: Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 33(4), 915–926 (1995)
Everitt B.S.: Cambridge Dictionary of Statistics. 3rd edn. Cambridge University Press, Cambridge (2006)
Farifteh J., Vander Meer F., Atzbergerb C., Carranzaa E.J.M.: Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 110(1), 59–78 (2007)
Fritz, T.: TerraSAR-X Ground Segment Level 1b Product Format Specification, Issue, 1.3, p. 257. http://sss.terrasar-x.dlr.de/pdfs/TX-GS-DD-3307.pdf, 10.12.2007
Fumio H.: Econometrics. Princeton University Press, Princeton (2000)
Fung A.K., Li Z., Chen K.S.: Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 30(2), 356–369 (1992)
Fung A.K.: Microwave Scattering and Emission Models and their Applications. Artech House, Boston (1994)
Gleich D., Datcu M.: Wavelet-based despeckling of SAR images using Gauss–Markov random fields. IEEE Trans. Geosci. Remote Sens. 45(2), 4127–4143 (2007)
Haykin S.: Neural Networks: a Comprehensive Foundation. Pearson Prentice Hall, New York (1999)
Hebar M., Gleich D., Cucej Z.: Auto-binomial model for SAR image despeckling and information extraction. IEEE Trans. Geosci. Remote Sens. 47(8), 2818–28359 (2009)
Kohonen T.: Self-Organizing Maps. Springer, Berlin (2001)
Kseneman M., Moline D.E., Gleich D., Datcu M.: Despeckling and Information Extraction from Synthetic Aperture Radar Images using GPU’s, ESA-EUSC (2009)
Mattia F., Satalino G., Dente L., Pasquariello G.: Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Trans. Geosci. Remote Sens. 44(4), 900–912 (2006)
Muller D.E.: A method for solving algebraic equations using an automatic computer. MTAC 10, 208–215 (1956)
Narayanan R.M., Hirsave P.P.: Soil moisture estimation models using SIR-C SAR data: a case study in New Hampshire, USA. Remote Sens. Environ. 75(3), 385–396 (2001)
NVIDIA’s parallel computing Programming http://www.nvidia.com/object/cuda_home.html
Oh Y., Kay Y.C.: Condition for precise measurement of soil surface roughness. IEEE Trans. Geosci. Remote Sens. 36(2), 691–695 (1998)
Raney R.K., Freeman T., Hawkins R.W., Bamler R.: A plea for radar brightness. IGARSS ’94 2, 1090–1092 (1994)
Shi J., Wang J., Hsu A.Y., O’Neil P.E., Engman E.T.: Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Trans. Geosci. Remote Sens. 35(5), 1254–1266 (1997)
Sikdar M., Cumming I.: A modified empirical model for soil moisture estimation in vegetated areas using SAR data. IGARSS ’94 2, 803–806 (1994)
TRIME-PICO64. http://www.imko.de/en/products/industrialmoisture/pico64
Ulaby F.T., Moore R.K., Fung A.K.: Microwave Remote Sensing: Active and Passive. Radar Remote Sensing and Surface Scattering and Emission Theory, vol 2. Addison-Wesley, Massachusetts (1982)
Ulaby F.T., Moore R.K., Fung A.K.: Microwave Remote Sensing: Active and Passive. From Theory to Applications. Artech House, Boston (1986)
Veelenturf L.P.J.: Analysis and Applications of Artificial Neural Networks. Prentice Hall, London (1995)
Walessa M., Datcu M.: Model-based despeckling and information extraction from SAR images. IEEE Trans. Geosci. Remote Sens. 38(5), 2258–2269 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kseneman, M., Gleich, D. & Potočnik, B. Soil-moisture estimation from TerraSAR-X data using neural networks. Machine Vision and Applications 23, 937–952 (2012). https://doi.org/10.1007/s00138-011-0375-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-011-0375-3