Abstract
This paper addresses detection, tracking and recognition of traffic signs in video. Previous research has shown that very good detection recalls can be obtained by state-of-the-art detection algorithms. Unfortunately, satisfactory precision and localization accuracy are more difficultly achieved. We follow the intuitive notion that it should be easier to accurately detect an object from an image sequence than from a single image. We propose a novel two-stage technique which achieves improved detection results by applying temporal and spatial constraints to the occurrences of traffic signs in video. The first stage produces well-aligned temporally consistent detection tracks by managing many competing track hypotheses at once. The second stage improves the precision by filtering the detection tracks by a learned discriminative model. The two stages have been evaluated in extensive experiments performed on videos acquired from a moving vehicle. The obtained experimental results clearly confirm the advantages of the proposed technique.
Similar content being viewed by others
References
Arnoul, P., Viala M., Guerin J.P., Mergy, M.: Traffic signs localisation for highways inventory from a video camera on board a moving collection van. In: Proceedings of IV, pp. 141–146, Tokyo (1996)
Bahlmann, C., Zhu, Y., Ramesh, V., Pellkofer, M., Koehler, T.: A system for traffic sign detection, tracking, and recognition using color, shape, and motion information. In Proceedings of IV, pp. 255–260, Las Vegas (2005)
Baker S., Matthews I.: Lucas–Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)
Baro, X., Vitria, J.: Fast traffic sign detection on greyscale images. Recent Advances in Artificial Intelligence Research and Development, pp. 131–138 (2005)
Baró X., Escalera S., Vitrià J., Pujol O., Radeva P.: Traffic sign recognition using evolutionary adaboost detection and forest-eco classification. IEEE Trans. ITS 10(1), 113–126 (2009)
Benesova, W., Lypetskyy, Y., Andreu, J.-Ph., Paletta, L., Jeitler, A., Hdl, E.: A mobile system for vision based road sign inventory. In: Proceedings of the 5th international symposium on mobile mapping technology, Padova (2007)
Bradski G.R., Kaehler A.: Learning OpenCV. O’Reilly Media, Inc, Sebastopol (2008)
Brkić, K., Pinz, A., Šegvić, S.: Traffic sign detection as a component of an automated traffic infrastructure inventory system. In: Proceedings of AAPR/ÖAGM, Stainz (2009)
Brkić, K., Šegvić, S., Zoran, K., Sikirić, I., Pinz, A.: Generative modeling of spatio-temporal traffic sign trajectories. In: Proceedings of UCVP, pp. 25–31, held in conjuction with CVPR2010, San Francisco (2010)
Cardoso, J.L., Stefan, C., Elvik, R., Srensen, M.: Road safety inspection—best practice guidelines and implementation steps. Technical report, deliverable D5 of the EU FP6 project RIPCORD, ISEREST (2007)
Casas J.R., Sitjes A.P., Folch P.P.: Mutual feedback scheme for face detection and tracking aimed at density estimation in demonstrations. Vis. Image Signal Process. IEE Proc. 152(3), 334–346 (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR, pp. 886–893 (2005)
Davison A.J., Reid I.D., Molton N.D., Stasse O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. PAMI 26(6), 1052–1067 (2007)
Duda R.O., Hart P.E., Stork D.G.: Pattern classification, 2nd edn. Wiley, New York (2001)
de la Escalera A., Moreno L.E., Salichs M.A., Armingol J.M.: Road traffic sign detection and classification. IEEE Trans. Ind. Electron. 44(6), 848–859 (1997)
Enzweiler M., Gavrila D.M.: Monocular pedestrian detection: survey and experiments. IEEE Trans. PAMI 31(12), 2179–2195 (2009)
Ess A., Leibe B., Schindler K., Van Gool L.: Robust multi-person tracking from a mobile platform. IEEE Trans. PAMI 31(10), 1831–1846 (2009)
Fang C.-Y., Chen S.-W., Fuh C.-S.: Road-sign detection and tracking. IEEE Trans. Veh. Technol. 52(5), 1329–1341 (2003)
Fletcher L., Apostoloff N., Petersson L., Zelinsky A.: Vision in and out of vehicles. IEEE Intell. Syst. 18(3), 12–17 (2003)
Gao X.W., Podladchikova L.N., Shaposhnikov D.G., Hong K., Shevtsova N.: Recognition of traffic signs based on their colour and shape features extracted using human vision models. J. Vis. Commun. Image Represent. 17(4), 675–685 (2006)
Garcia-Garrido, M.A., Sotelo, M.A., Martin-Gorostiza, E.: Fast traffic sign detection and recognition under changing lighting conditions. In: Proceedings of ITSC, pp. 811–816, Toronto (2006)
Grabner, H., Beleznai, C., Bischof, H.: Improving adaboost detection rate by wobble and mean shift. In: Proceedings of CVWW, pp. 23–32, Zell an der Pram (2005)
Hoiem D., Efros A.A., Hebert M.: Putting objects in perspective. Int. J. Comput. Vis. 80(1), 3–15 (2008)
Inland transport comitee (1968) Convention on road signs and signals. Economic comission for Europe
Larsson, F., Felsberg, M.: Using fourier descriptors and spatial models for traffic sign recognition. In: Proceedings of SCIA, vol. 6688, pp. 238–249 (2011)
Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In: Proceedings of DAGM, pp. 297–304, Magdeburg (2003)
Liu, W., Chen, X., Duan, B., Dong, H., Fu, P., Yuan, H., Zhao, H.: A system for road sign detection, recognition and tracking based on multi-cues hybrid. In: Proceedings of IV, pp. 562–567 (2009)
Loy, G., Barnes, N.M.: Fast shape-based road sign detection for a driver assistance system. In: Proceedings of IROS, pp. 70–75, Sendai (2004)
Madeira, S.R., Bastos, L.C., Sousa, A.M., Sobral, J.F., Santos, L.P.: Automatic traffic signs inventory using a mobile mapping system for GIS applications. In: International conference and exhibition on geographic information, Lisboa (2005)
Maldonado-Bascon, S., Lafuente-Arroyo, S., Siegmann, P., Gomez-Moreno, H., Acevedo-Rodriguez, F.J.: Traffic sign recognition system for inventory purposes. In: Proceedings of IV, pp. 590–595, Eindhoven (2008)
Marlin, B.M.: Missing data problems in machine learning. Doctoral dissertation, University of Toronto (2008)
Mccarthy, T., Maynooth, N., Mcelhinney, C., Cahalane, C., Kumar, P.: Initial results from european road safety inspection (eursi) mobile mapping project. In: Proceedings of ISPRS CRIMT, Newcastle (2010)
Nguwi Y.-Y., Kouzani A.Z.: Detection and classification of road signs in natural environments. Neural Comput. Appl. 17(3), 265–289 (2008)
Parada-Loira, F., Landesa-Vázquez, I., Alba-Castro, J.L.: Fast real-time multiclass traffic sign detection based on novel shape and texture descriptors. In: Proceedings of ITSC, pp. 1–8, Madeira (2010)
Peng J., Bhanu B.: Learning to perceive objects for autonomous navigation. Auton. Robot. 6(2), 187–201 (1999)
Pham, M.-T., Gao, Y., Hoang, V.-D.D., Cham, T.-J.: Fast polygonal integration and its application in extending haar-like features to improve object detection. In: Proceedings of CVPR, San Francisco (2010)
Piccioli G., De Micheli E., Parodi P., Campani M.: Robust method for road sign detection and recognition. Image Vis. Comput. 14(3), 209–223 (1996)
Roth, P.M.: On-line conservative learning. Ph.D. thesis, Graz university of Technology, Institute for Computer Vision and Graphics (2008)
Ruta, A., Li, Y., Liu, X.: Detection, tracking and recognition of traffic signs from video input. In Proceedings of ITSC, pp. 55–60 (2008)
Ruta A., Li Y., Liu X.: Real-time traffic sign recognition from video by class-specific discriminative features. Pattern Recognit. 43(1), 416–430 (2010)
Ruta, A., Porikli, F., Watanabe, S., Li, Y.: In-vehicle camera traffic sign detection and recognition. Mach. Vis. Appl. (2009, accepted for publication)
Šegvić, S., Remazeilles, A., Chaumette, F.: Enhancing the point feature tracker by adaptive modelling of the feature support. In: Proceedings of ECCV, Springer LNCS, pp. 112–124, Graz (2006)
Šegvić S., Remazeilles A., Diosi A., Chaumette F.: A scalable mapping and localization framework for robust appearance-based navigation. Comput. Vis. Image Underst. 113(2), 172–187 (2009)
Šegvić, S., Brkić, K., Kalafatić, Z., Stanisavljević, V., Ševrović, M., Budimir, D., Dadić, I.: A computer vision assisted geoinformation inventory for traffic infrastructure. In: Proceedings of ITSC, pp. 66–73, Madeira (2010)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of CVPR, pp. 593–600, Seattle (1994)
Timofte, R., Zimmermann, K., Van Gool, L.: Multi-view traffic sign detection, recognition, and 3d localisation. In: Proceedings of WACV, pp. 69–76, Snowbird (2009)
Tuzel, O., Porikli, F., Meer, P.: Learning on lie groups for invariant detection and tracking. In: Proceedings of CVPR, pp. 1–8, Anchorage (2008)
Viola P., Jones M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Šegvić, S., Brkić, K., Kalafatić, Z. et al. Exploiting temporal and spatial constraints in traffic sign detection from a moving vehicle. Machine Vision and Applications 25, 649–665 (2014). https://doi.org/10.1007/s00138-011-0396-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-011-0396-y