Abstract
Recent studies have demonstrated that high-level semantics in data can be captured using sparse representation. In this paper, we propose an approach to human body pose estimation in static images based on sparse representation. Given a visual input, the objective is to estimate 3D human body pose using feature space information and geometrical information of the pose space. On the assumption that each data point and its neighbors are likely to reside on a locally linear patch of the underlying manifold, our method learns the sparse representation of the new input using both feature and pose space information and then estimates the corresponding 3D pose by a linear combination of the bases of the pose dictionary. Two strategies for dictionary construction are presented: (i) constructing the dictionary by randomly selecting the frames of a sequence and (ii) selecting specific frames of a sequence as dictionary atoms. We analyzed the effect of each strategy on the accuracy of pose estimation. Extensive experiments on datasets of various human activities show that our proposed method outperforms state-of-the-art methods.
Similar content being viewed by others
Notes
BVH format created by Biovision Company to describing 3D pose in animation production. http://www.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
References
Cmu graphics lab motion capture database (2013). http://mocap.cs.cmu.edu
Agarwal, A., Triggs, B.: Monocular human motion capture with a mixture of regressors. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, vol. 03, CVPR ’05, pp. 72. IEEE Computer Society, Washington, DC (2005) doi:10.1109/CVPR.2005.496
Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 44–58 (2006). doi:10.1109/TPAMI.2006.21
Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. Trans. Sig. Proc. 54(11), 4311–4322 (2006). doi:10.1109/TSP.2006.881199
Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking by detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 623–630 (2010). doi:10.1109/CVPR.2010.5540156
Bo, L., Sminchisescu, C.: Twin gaussian processes for structured prediction. Int. J. Comput. Vision 87(1–2), 28–52 (2010). doi:10.1007/s11263-008-0204-y
Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theor. 57(7), 4680–4688 (2011). doi:10.1109/TIT.2011.2146090
Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507
Chen, C., Yang, Y., Nie, F., Odobez, J.M.: 3d human pose recovery from image by efficient visual feature selection. Comput. Vis. Image Underst. 115(3), 290–299 (2011). doi:10.1016/j.cviu.2010.11.007
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001). doi:10.1137/S003614450037906X
Christoudias, C.M., Darrell, T.: On modelling nonlinear shape-and-texture appearance manifolds. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, vol. 02, CVPR ’05, pp. 1067–1074. IEEE Computer Society, Washington, DC (2005). doi:10.1109/CVPR.2005.255
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)
Elgammal, A., Lee, C.S.: Inferring 3d body pose from silhouettes using activity manifold learning. In: Proceedings of the IEEE Computer Society Conference on Computer vision and Pattern Recognition. CVPR’04, pp. 681–688. IEEE Computer Society, Washington, DC (2004)
Hara, K., Kurokawa, T.: Human pose estimation using patch-based candidate generation and model-based verification. In: IEEE International Conference on Automatic Face Gesture Recognition and Workshops (FG), pp. 687–693 (2011). doi:10.1109/FG.2011.5771331
Huang, J.B., Yang, M.H.: Estimating human pose from occluded images. In: ACCV (1), Lecture Notes in Computer Science, vol. 5994, pp. 48–60. Springer, Berlin (2009)
Huang, J.B., Yang, M.H.: Fast sparse representation with prototypes. In: CVPR, pp. 3618–3625. IEEE, New York (2010)
Jiang, H.: 20th International Conference on 3d human pose reconstruction using millions of exemplars. In: Pattern Recognition (ICPR), pp. 1674–1677 (2010). doi:10.1109/ICPR.2010.414
Lee, C.S., Elgammal, A.M.: Modeling view and posture manifolds for tracking. In: ICCV, pp. 1–8. IEEE, New York (2007)
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS, pp. 801–808. NIPS, Kolkata (2007)
Lee, M.W., Nevatia, R.: Human pose tracking in monocular sequence using multilevel structured models. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 27–38 (2009). doi:10.1109/TPAMI.2008.35.
Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 791–804 (2012). doi:10.1109/TPAMI.2011.156
Mori, G., Malik, J.: Recovering 3d human body configurations using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1052–1062 (2006)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Res. 37, 3311–3325 (1997)
Pourdamghani, N., Rabiee, H.R., Faghri, F., Rohban, M.H.: Graph based semi-supervised human pose estimation: When the output space comes to help. Pattern Recogn. Lett. 33(12), 1529–1535 (2012). doi:10.1016/j.patrec.2012.04.012
Rao, R.P.N., Olshausen, B.A., Lewicki, M.S.: Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge (2002)
Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010). doi:10.1109/JPROC.2010.2040551
Serre, T.: Learning a dictionary of shape-components in visual cortex: comparison with neurons, humans and machines. Mass. Inst. Technol. (2006)
Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 2, ICCV ’03, pp. 750. IEEE Computer Society, Washington, DC (2003)
Shang, L., Zhou, Y., Tao, L., Sun, Z.l.: Super-resolution restoration of mmw image using sparse representation based on couple dictionaries. In: Emerging Intelligent Computing Technology and Applications, pp. 286–291. Springer, Berlin (2012)
Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Sparse representations of image gradient orientations for visual recognition and tracking. In: Proceedings of IEEE International Conference Computer Vision and Pattern Recognition (CVPR-W11), Workshop on CVPR for Human Behaviour Analysis, pp. 26–33. Colorado Springs, USA (2011)
Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from small training sets. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV) vol. 1, vol. 01, ICCV ’05, pp. 403–410. IEEE Computer Society, Washington, DC (2005) doi:10.1109/ICCV.2005.193
Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for computer vision and pattern recognition (2009)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009). doi:10.1109/TPAMI.2008.79
Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)
Yang, S., Liu, Z., Wang, M., Sun, F., Jiao, L.: Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction. Neurocomputing 74(17), 3193–3203 (2011). doi:10.1016/j.neucom.2011.04.014
Zheng, M., Bu, J., Chen, C., Wang, C., Zhang, L., Qiu, G., Cai, D.: Graph regularized sparse coding for image representation. Trans. Image Proc. 20(5), 1327–1336 (2011). doi:10.1109/TIP.2010.2090535
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zolfaghari, M., Jourabloo, A., Gozlou, S.G. et al. 3D human pose estimation from image using couple sparse coding. Machine Vision and Applications 25, 1489–1499 (2014). https://doi.org/10.1007/s00138-014-0613-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-014-0613-6